BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29389860)

  • 1. The Effects of Graphene Stacking on the Performance of Methane Sensor: A First-Principles Study on the Adsorption, Band Gap and Doping of Graphene.
    Yang N; Yang D; Zhang G; Chen L; Liu D; Cai M; Fan X
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29389860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A First-Principle Theoretical Study of Mechanical and Electronic Properties in Graphene Single-Walled Carbon Nanotube Junctions.
    Yang N; Yang D; Chen L; Liu D; Cai M; Fan X
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29137203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flat-Band Electronic Structure and Interlayer Spacing Influence in Rhombohedral Four-Layer Graphene.
    Wang W; Shi Y; Zakharov AA; Syväjärvi M; Yakimova R; Uhrberg RIG; Sun J
    Nano Lett; 2018 Sep; 18(9):5862-5866. PubMed ID: 30136852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.
    Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and electronic properties of graphene nanotube-nanoribbon hybrids.
    Lee CH; Yang CK; Lin MF; Chang CP; Su WS
    Phys Chem Chem Phys; 2011 Mar; 13(9):3925-31. PubMed ID: 21210053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative density functional theory study of oxygen doping versus adsorption on graphene to tune its band gap.
    Hussain A; Basit A
    J Mol Graph Model; 2021 Sep; 107():107982. PubMed ID: 34237664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global Control of Stacking-Order Phase Transition by Doping and Electric Field in Few-Layer Graphene.
    Li H; Utama MIB; Wang S; Zhao W; Zhao S; Xiao X; Jiang Y; Jiang L; Taniguchi T; Watanabe K; Weber-Bargioni A; Zettl A; Wang F
    Nano Lett; 2020 May; 20(5):3106-3112. PubMed ID: 32286843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular doping and band-gap opening of bilayer graphene.
    Samuels AJ; Carey JD
    ACS Nano; 2013 Mar; 7(3):2790-9. PubMed ID: 23414110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stacking stability of C
    Dabsamut K; T-Thienprasert J; Jungthawan S; Boonchun A
    Sci Rep; 2019 May; 9(1):6861. PubMed ID: 31048761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band structure of graphene modulated by Ti or N dopants and applications in gas sensoring.
    Zhang HP; Luo XG; Lin XY; Zhang YP; Tang PP; Lu X; Tang Y
    J Mol Graph Model; 2015 Sep; 61():224-30. PubMed ID: 26295685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Kinetic Pathway toward High-Density Ordered N Doping of Epitaxial Graphene on Cu(111) Using C
    Cui P; Choi JH; Zeng C; Li Z; Yang J; Zhang Z
    J Am Chem Soc; 2017 May; 139(21):7196-7202. PubMed ID: 28497683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of layer stacking on the electronic structure of graphene nanoribbons.
    Kharche N; Zhou Y; O'Brien KP; Kar S; Nayak SK
    ACS Nano; 2011 Aug; 5(8):6096-101. PubMed ID: 21766785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible loss of Bernal stacking during the deformation of few-layer graphene in nanocomposites.
    Gong L; Young RJ; Kinloch IA; Haigh SJ; Warner JH; Hinks JA; Xu Z; Li L; Ding F; Riaz I; Jalil R; Novoselov KS
    ACS Nano; 2013 Aug; 7(8):7287-94. PubMed ID: 23899378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicene beyond mono-layers--different stacking configurations and their properties.
    Kamal C; Chakrabarti A; Banerjee A; Deb SK
    J Phys Condens Matter; 2013 Feb; 25(8):085508. PubMed ID: 23370369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A first-principles study of the electrically tunable band gap in few-layer penta-graphene.
    Wang J; Wang Z; Zhang RJ; Zheng YX; Chen LY; Wang SY; Tsoo CC; Huang HJ; Su WS
    Phys Chem Chem Phys; 2018 Jul; 20(26):18110-18116. PubMed ID: 29938269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Electronic Properties of Nitrogen and Sulfur Doped Graphene: Density Functional Theory Approach.
    Lee JH; Kwon SH; Kwon S; Cho M; Kim KH; Han TH; Lee SG
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30781379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic and Quantum Transport Properties of Atomically Identified Si Point Defects in Graphene.
    Lopez-Bezanilla A; Zhou W; Idrobo JC
    J Phys Chem Lett; 2014 May; 5(10):1711-8. PubMed ID: 26270371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opening an electrical band gap of bilayer graphene with molecular doping.
    Zhang W; Lin CT; Liu KK; Tite T; Su CY; Chang CH; Lee YH; Chu CW; Wei KH; Kuo JL; Li LJ
    ACS Nano; 2011 Sep; 5(9):7517-24. PubMed ID: 21819152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving biogas separation and methane storage with multilayer graphene nanostructure via layer spacing optimization and lithium doping: a molecular simulation investigation.
    Chen JJ; Li WW; Li XL; Yu HQ
    Environ Sci Technol; 2012 Sep; 46(18):10341-8. PubMed ID: 22888826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.