BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 29389891)

  • 1. Potential of New Isolates of Dunaliella Salina for Natural β-Carotene Production.
    Xu Y; Ibrahim IM; Wosu CI; Ben-Amotz A; Harvey PJ
    Biology (Basel); 2018 Feb; 7(1):. PubMed ID: 29389891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparison of β-Carotene, Phytoene and Amino Acids Production in
    Sui Y; Mazzucchi L; Acharya P; Xu Y; Morgan G; Harvey PJ
    Foods; 2021 Nov; 10(11):. PubMed ID: 34829102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creatinine combined with light increases the contents of lutein and β-carotene, the main carotenoids of Dunaliella bardawil.
    Xie SR; Li Y; Liang MH; Yan B; Jiang JG
    Enzyme Microb Technol; 2021 Nov; 151():109913. PubMed ID: 34649686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bifunctional identification of both lycopene β- and ε-cyclases from the lutein-rich Dunaliella bardawil.
    Liang MH; Liang ZC; Chen HH; Jiang JG
    Enzyme Microb Technol; 2019 Dec; 131():109426. PubMed ID: 31615667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) Chlorophyta.
    Gómez PI; Barriga A; Cifuentes AS; González MA
    Biol Res; 2003; 36(2):185-92. PubMed ID: 14513713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract.
    Hu CC; Lin JT; Lu FJ; Chou FP; Yang DJ
    Food Chem; 2008 Jul; 109(2):439-46. PubMed ID: 26003370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering the β-carotene hyperaccumulation in Dunaliella by the comprehensive analysis of Dunaliella salina and Dunaliella tertiolecta under high light conditions.
    Kim M; Kim J; Lee S; Khanh N; Li Z; Polle JEW; Jin E
    Plant Cell Environ; 2024 Jan; 47(1):213-229. PubMed ID: 37727131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA fingerprinting differentiation between beta-carotene hyperproducer strains of Dunaliella from around the world.
    Olmos J; Ochoa L; Paniagua-Michel J; Contreras R
    Saline Syst; 2009 Jun; 5():5. PubMed ID: 19563682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of Two Phytoene Synthases and Orange Protein in Carotenoid Metabolism of the β-Carotene-Accumulating
    Liang MH; Xie SR; Dai JL; Chen HH; Jiang JG
    Microbiol Spectr; 2023 Jun; 11(3):e0006923. PubMed ID: 37022233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30.
    Xu Y; Ibrahim IM; Harvey PJ
    Plant Physiol Biochem; 2016 Sep; 106():305-15. PubMed ID: 27231875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Factors Which Determine Massive beta-Carotene Accumulation in the Halotolerant Alga Dunaliella bardawil.
    Ben-Amotz A; Avron M
    Plant Physiol; 1983 Jul; 72(3):593-7. PubMed ID: 16663050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoisomers of Colourless Carotenoids from the Marine Microalga
    Mazzucchi L; Xu Y; Harvey P
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32325762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Carotenogenic
    Saha SK; Kazipet N; Murray P
    Biomed Res Int; 2018; 2018():7532897. PubMed ID: 29854788
    [No Abstract]   [Full Text] [Related]  

  • 14. Red Light Control of β-Carotene Isomerisation to
    Xu Y; Harvey PJ
    Antioxidants (Basel); 2019 May; 8(5):. PubMed ID: 31137878
    [No Abstract]   [Full Text] [Related]  

  • 15. ROS Induce β-Carotene Biosynthesis Caused by Changes of Photosynthesis Efficiency and Energy Metabolism in
    Xi Y; Kong F; Chi Z
    Front Bioeng Biotechnol; 2020; 8():613768. PubMed ID: 33520962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode of Action of the Massively Accumulated beta-Carotene of Dunaliella bardawil in Protecting the Alga against Damage by Excess Irradiation.
    Ben-Amotz A; Shaish A; Avron M
    Plant Physiol; 1989 Nov; 91(3):1040-3. PubMed ID: 16667108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of temperature and irradiance on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory conditions.
    Gómez PI; González MA
    Biol Res; 2005; 38(2-3):151-62. PubMed ID: 16238094
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Lan Y; Song Y; Guo Y; Qiao D; Cao Y; Xu H
    J Microbiol Biotechnol; 2022 Dec; 32(12):1622-1631. PubMed ID: 36384973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of Dunaliella salina biomass rich in 9-cis-beta-carotene and lutein in a closed tubular photobioreactor.
    García-González M; Moreno J; Manzano JC; Florencio FJ; Guerrero MG
    J Biotechnol; 2005 Jan; 115(1):81-90. PubMed ID: 15607227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of Light, Temperature, and Nutrition on Growth and Pigment Accumulation of Three Dunaliella salina Strains Isolated from Saline Soil.
    Wu Z; Duangmanee P; Zhao P; Juntawong N; Ma C
    Jundishapur J Microbiol; 2016 Jan; 9(1):e26732. PubMed ID: 27099682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.