BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29390085)

  • 1. RNentropy: an entropy-based tool for the detection of significant variation of gene expression across multiple RNA-Seq experiments.
    Zambelli F; Mastropasqua F; Picardi E; D'Erchia AM; Pesole G; Pavesi G
    Nucleic Acids Res; 2018 May; 46(8):e46. PubMed ID: 29390085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using RNentropy to Detect Significant Variation in Gene Expression Across Multiple RNA-Seq or Single-Cell RNA-Seq Samples.
    Zambelli F; Pavesi G
    Methods Mol Biol; 2021; 2284():77-96. PubMed ID: 33835439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does normalization impact RNA-seq disease diagnosis?
    Han H; Men K
    J Biomed Inform; 2018 Sep; 85():80-92. PubMed ID: 30041017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ChimeRScope: a novel alignment-free algorithm for fusion transcript prediction using paired-end RNA-Seq data.
    Li Y; Heavican TB; Vellichirammal NN; Iqbal J; Guda C
    Nucleic Acids Res; 2017 Jul; 45(13):e120. PubMed ID: 28472320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isoform abundance inference provides a more accurate estimation of gene expression levels in RNA-seq.
    Wang X; Wu Z; Zhang X
    J Bioinform Comput Biol; 2010 Dec; 8 Suppl 1():177-92. PubMed ID: 21155027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BALLI: Bartlett-adjusted likelihood-based linear model approach for identifying differentially expressed genes with RNA-seq data.
    Park K; An J; Gim J; Seo M; Lee W; Park T; Won S
    BMC Genomics; 2019 Jul; 20(1):540. PubMed ID: 31266443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq.
    Lu B; Zeng Z; Shi T
    Sci China Life Sci; 2013 Feb; 56(2):143-55. PubMed ID: 23393030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae.
    Nookaew I; Papini M; Pornputtapong N; Scalcinati G; Fagerberg L; Uhlén M; Nielsen J
    Nucleic Acids Res; 2012 Nov; 40(20):10084-97. PubMed ID: 22965124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of differential gene expression tools for RNA sequencing time course data.
    Spies D; Renz PF; Beyer TA; Ciaudo C
    Brief Bioinform; 2019 Jan; 20(1):288-298. PubMed ID: 29028903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ChimPipe: accurate detection of fusion genes and transcription-induced chimeras from RNA-seq data.
    Rodríguez-Martín B; Palumbo E; Marco-Sola S; Griebel T; Ribeca P; Alonso G; Rastrojo A; Aguado B; Guigó R; Djebali S
    BMC Genomics; 2017 Jan; 18(1):7. PubMed ID: 28049418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts.
    Testa AC; Hane JK; Ellwood SR; Oliver RP
    BMC Genomics; 2015 Mar; 16(1):170. PubMed ID: 25887563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SimBA: A methodology and tools for evaluating the performance of RNA-Seq bioinformatic pipelines.
    Audoux J; Salson M; Grosset CF; Beaumeunier S; Holder JM; Commes T; Philippe N
    BMC Bioinformatics; 2017 Sep; 18(1):428. PubMed ID: 28969586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Express: A database of transcriptome profiles encompassing known and novel transcripts across multiple development stages in eye tissues.
    Budak G; Dash S; Srivastava R; Lachke SA; Janga SC
    Exp Eye Res; 2018 Mar; 168():57-68. PubMed ID: 29337142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation.
    Gluck C; Min S; Oyelakin A; Smalley K; Sinha S; Romano RA
    BMC Genomics; 2016 Nov; 17(1):923. PubMed ID: 27852218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DETECTION OF BACTERIAL SMALL TRANSCRIPTS FROM RNA-SEQ DATA: A COMPARATIVE ASSESSMENT.
    Peña-Castillo L; Grüell M; Mulligan ME; Lang AS
    Pac Symp Biocomput; 2016; 21():456-67. PubMed ID: 26776209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bootstrap-based differential gene expression analysis for RNA-Seq data with and without replicates.
    Al Seesi S; Tiagueu YT; Zelikovsky A; Măndoiu II
    BMC Genomics; 2014; 15 Suppl 8(Suppl 8):S2. PubMed ID: 25435284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data.
    Kang K; Meng Q; Shats I; Umbach DM; Li M; Li Y; Li X; Li L
    PLoS Comput Biol; 2019 Dec; 15(12):e1007510. PubMed ID: 31790389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data.
    Wu H; Wang C; Wu Z
    Biostatistics; 2013 Apr; 14(2):232-43. PubMed ID: 23001152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data.
    Yip SH; Sham PC; Wang J
    Brief Bioinform; 2019 Jul; 20(4):1583-1589. PubMed ID: 29481632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.