These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 29390619)
1. Solitary states for coupled oscillators with inertia. Jaros P; Brezetsky S; Levchenko R; Dudkowski D; Kapitaniak T; Maistrenko Y Chaos; 2018 Jan; 28(1):011103. PubMed ID: 29390619 [TBL] [Abstract][Full Text] [Related]
2. Stability of rotatory solitary states in Kuramoto networks with inertia. Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh IV Phys Rev E; 2022 Feb; 105(2-1):024203. PubMed ID: 35291064 [TBL] [Abstract][Full Text] [Related]
3. Multistable states in a system of coupled phase oscillators with inertia. Yuan D; Lin F; Wang L; Liu D; Yang J; Xiao Y Sci Rep; 2017 Feb; 7():42178. PubMed ID: 28176829 [TBL] [Abstract][Full Text] [Related]
4. Chimera states on the route from coherence to rotating waves. Jaros P; Maistrenko Y; Kapitaniak T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022907. PubMed ID: 25768569 [TBL] [Abstract][Full Text] [Related]
5. Bistability of patterns of synchrony in Kuramoto oscillators with inertia. Belykh IV; Brister BN; Belykh VN Chaos; 2016 Sep; 26(9):094822. PubMed ID: 27781476 [TBL] [Abstract][Full Text] [Related]
6. When three is a crowd: Chaos from clusters of Kuramoto oscillators with inertia. Brister BN; Belykh VN; Belykh IV Phys Rev E; 2020 Jun; 101(6-1):062206. PubMed ID: 32688588 [TBL] [Abstract][Full Text] [Related]
7. Breathing and switching cyclops states in Kuramoto networks with higher-mode coupling. Bolotov MI; Munyayev VO; Smirnov LA; Osipov GV; Belykh I Phys Rev E; 2024 May; 109(5-1):054202. PubMed ID: 38907462 [TBL] [Abstract][Full Text] [Related]
8. Chimeralike states in two distinct groups of identical populations of coupled Stuart-Landau oscillators. Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M Phys Rev E; 2017 Feb; 95(2-1):022208. PubMed ID: 28297891 [TBL] [Abstract][Full Text] [Related]
9. Chimeras and solitary states in 3D oscillator networks with inertia. Maistrenko V; Sudakov O; Osiv O Chaos; 2020 Jun; 30(6):063113. PubMed ID: 32611131 [TBL] [Abstract][Full Text] [Related]
10. Solitary states and solitary state chimera in neural networks. Rybalova E; Anishchenko VS; Strelkova GI; Zakharova A Chaos; 2019 Jul; 29(7):071106. PubMed ID: 31370403 [TBL] [Abstract][Full Text] [Related]
11. Chimera states in two-dimensional networks of locally coupled oscillators. Kundu S; Majhi S; Bera BK; Ghosh D; Lakshmanan M Phys Rev E; 2018 Feb; 97(2-1):022201. PubMed ID: 29548198 [TBL] [Abstract][Full Text] [Related]
12. Chimera states for coupled oscillators. Abrams DM; Strogatz SH Phys Rev Lett; 2004 Oct; 93(17):174102. PubMed ID: 15525081 [TBL] [Abstract][Full Text] [Related]
13. Distinct collective states due to trade-off between attractive and repulsive couplings. Sathiyadevi K; Chandrasekar VK; Senthilkumar DV; Lakshmanan M Phys Rev E; 2018 Mar; 97(3-1):032207. PubMed ID: 29776099 [TBL] [Abstract][Full Text] [Related]
14. Abrupt symmetry-preserving transition from the chimera state. Manoranjani M; Senthilkumar DV; Chandrasekar VK Phys Rev E; 2023 Mar; 107(3-1):034212. PubMed ID: 37072986 [TBL] [Abstract][Full Text] [Related]
15. Chimera-type states induced by local coupling. Clerc MG; Coulibaly S; Ferré MA; García-Ñustes MA; Rojas RG Phys Rev E; 2016 May; 93(5):052204. PubMed ID: 27300877 [TBL] [Abstract][Full Text] [Related]
16. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators. Yue W; Smith LD; Gottwald GA Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503 [TBL] [Abstract][Full Text] [Related]
17. Chimeras in networks of planar oscillators. Laing CR Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066221. PubMed ID: 20866515 [TBL] [Abstract][Full Text] [Related]
18. Imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators. Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M Phys Rev E; 2016 Jul; 94(1-1):012311. PubMed ID: 27575152 [TBL] [Abstract][Full Text] [Related]
19. Imperfect traveling chimera states induced by local synaptic gradient coupling. Bera BK; Ghosh D; Banerjee T Phys Rev E; 2016 Jul; 94(1-1):012215. PubMed ID: 27575131 [TBL] [Abstract][Full Text] [Related]
20. Spontaneous symmetry breaking due to the trade-off between attractive and repulsive couplings. Sathiyadevi K; Karthiga S; Chandrasekar VK; Senthilkumar DV; Lakshmanan M Phys Rev E; 2017 Apr; 95(4-1):042301. PubMed ID: 28505842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]