These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29390685)

  • 1. Measurement of shape and deformation of insect wing.
    Yin D; Wei Z; Wang Z; Zhou C
    Rev Sci Instrum; 2018 Jan; 89(1):014301. PubMed ID: 29390685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.
    Rajabi H; Ghoroubi N; Malaki M; Darvizeh A; Gorb SN
    PLoS One; 2016; 11(8):e0160610. PubMed ID: 27513753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial insect wings with biomimetic wing morphology and mechanical properties.
    Liu Z; Yan X; Qi M; Zhu Y; Huang D; Zhang X; Lin L
    Bioinspir Biomim; 2017 Sep; 12(5):056007. PubMed ID: 28696330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexural stiffness in insect wings. I. Scaling and the influence of wing venation.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2979-87. PubMed ID: 12878666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing full-field flapping wing dynamics from sparse measurements.
    Johns W; Davis L; Jankauski M
    Bioinspir Biomim; 2020 Nov; 16(1):016005. PubMed ID: 33164917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2989-97. PubMed ID: 12878667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
    Tay WB; van Oudheusden BW; Bijl H
    Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
    Phillips N; Knowles K; Bomphrey RJ
    Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force generation and wing deformation characteristics of a flapping-wing micro air vehicle 'DelFly II' in hovering flight.
    Percin M; van Oudheusden BW; de Croon GC; Remes B
    Bioinspir Biomim; 2016 May; 11(3):036014. PubMed ID: 27194392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding in and out: passive morphing in flapping wings.
    Stowers AK; Lentink D
    Bioinspir Biomim; 2015 Mar; 10(2):025001. PubMed ID: 25807583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Vibration Sensor for Measuring the Wing Flapping of Insects.
    Yanagisawa R; Shigaki S; Yasui K; Owaki D; Sugimoto Y; Ishiguro A; Shimizu M
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33467684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation behavior of dragonfly-inspired nodus structured wing in gliding flight through experimental visualization approach.
    Zhang S; Sunami Y; Hashimoto H
    Sci Rep; 2018 Apr; 8(1):5751. PubMed ID: 29636549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of modularity and integration suggests evolution of dragonfly wing venation mainly in response to functional demands.
    Blanke A
    J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30158178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies.
    Du G; Sun M
    J Theor Biol; 2012 May; 300():19-28. PubMed ID: 22266123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.
    Shang JK; Combes SA; Finio BM; Wood RJ
    Bioinspir Biomim; 2009 Sep; 4(3):036002. PubMed ID: 19713572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An image based application in Matlab for automated modelling and morphological analysis of insect wings.
    Eshghi S; Nabati F; Shafaghi S; Nooraeefar V; Darvizeh A; Gorb SN; Rajabi H
    Sci Rep; 2022 Aug; 12(1):13917. PubMed ID: 35977980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The function of resilin in honeybee wings.
    Ma Y; Ning JG; Ren HL; Zhang PF; Zhao HY
    J Exp Biol; 2015 Jul; 218(Pt 13):2136-42. PubMed ID: 25987733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible flapping wings with self-organized microwrinkles.
    Tanaka H; Okada H; Shimasue Y; Liu H
    Bioinspir Biomim; 2015 Jun; 10(4):046005. PubMed ID: 26119657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.
    Wu P; Stanford BK; Sällström E; Ukeiley L; Ifju PG
    Bioinspir Biomim; 2011 Mar; 6(1):016009. PubMed ID: 21339627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamic effects of corrugation in flapping insect wings in hovering flight.
    Meng XG; Xu L; Sun M
    J Exp Biol; 2011 Feb; 214(Pt 3):432-44. PubMed ID: 21228202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.