These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 29390699)

  • 1. Advanced platform for the in-plane ZT measurement of thin films.
    Linseis V; Völklein F; Reith H; Nielsch K; Woias P
    Rev Sci Instrum; 2018 Jan; 89(1):015110. PubMed ID: 29390699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithography-free resistance thermometry based technique to accurately measure Seebeck coefficient and electrical conductivity for organic and inorganic thin films.
    Kumar P; Repaka DVM; Hippalgaonkar K
    Rev Sci Instrum; 2017 Dec; 88(12):125112. PubMed ID: 29289178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene.
    Kim GH; Hwang DH; Woo SI
    Phys Chem Chem Phys; 2012 Mar; 14(10):3530-6. PubMed ID: 22307403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon nanowires as efficient thermoelectric materials.
    Boukai AI; Bunimovich Y; Tahir-Kheli J; Yu JK; Goddard WA; Heath JR
    Nature; 2008 Jan; 451(7175):168-71. PubMed ID: 18185583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic thermal conductivity measurement of organic thin film with bidirectional 3ω method.
    Yamaguchi S; Shiga T; Ishioka S; Saito T; Kodama T; Shiomi J
    Rev Sci Instrum; 2021 Mar; 92(3):034902. PubMed ID: 33820006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal conductivity measurement of thin films by a dc method.
    Yang J; Zhang J; Zhang H; Zhu Y
    Rev Sci Instrum; 2010 Nov; 81(11):114902. PubMed ID: 21133491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile preparation and thermoelectric properties of Bi₂Te₃ based alloy nanosheet/PEDOT:PSS composite films.
    Du Y; Cai KF; Chen S; Cizek P; Lin T
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5735-43. PubMed ID: 24666341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Four-probe measurements of the in-plane thermoelectric properties of nanofilms.
    Mavrokefalos A; Pettes MT; Zhou F; Shi L
    Rev Sci Instrum; 2007 Mar; 78(3):034901. PubMed ID: 17411207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoelectric Effects of Nanogaps between Two Tips.
    Huang HT; Ho GY; Wei ZH
    Small; 2018 Apr; 14(14):e1703695. PubMed ID: 29473298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of the planar Nernst effect in permalloy and nickel thin films with in-plane thermal gradients.
    Avery AD; Pufall MR; Zink BL
    Phys Rev Lett; 2012 Nov; 109(19):196602. PubMed ID: 23215412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure Evolution and Thermoelectric Properties of Carbonized Polydopamine Thin Films.
    Li H; Aulin YV; Frazer L; Borguet E; Kakodkar R; Feser J; Chen Y; An K; Dikin DA; Ren F
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):6655-6660. PubMed ID: 28192655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High temperature thermal conductivity of platinum microwire by 3ω method.
    Bhatta RP; Annamalai S; Mohr RK; Brandys M; Pegg IL; Dutta B
    Rev Sci Instrum; 2010 Nov; 81(11):114904. PubMed ID: 21133493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliable measurement of the Seebeck coefficient of organic and inorganic materials between 260 K and 460 K.
    Beretta D; Bruno P; Lanzani G; Caironi M
    Rev Sci Instrum; 2015 Jul; 86(7):075104. PubMed ID: 26233414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the heat flux normalized spin Seebeck coefficient of thin films as a function of temperature.
    Venkat G; Cox CDW; Sola A; Basso V; Morrison K
    Rev Sci Instrum; 2020 Jul; 91(7):073910. PubMed ID: 32752805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced thermoelectric performance of PEDOT:PSS flexible bulky papers by treatment with secondary dopants.
    Mengistie DA; Chen CH; Boopathi KM; Pranoto FW; Li LJ; Chu CW
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):94-100. PubMed ID: 25475257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.
    Liu J; Zhu J; Tian M; Gu X; Schmidt A; Yang R
    Rev Sci Instrum; 2013 Mar; 84(3):034902. PubMed ID: 23556838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extending the 3ω method: thermal conductivity characterization of thin films.
    Bodenschatz N; Liemert A; Schnurr S; Wiedwald U; Ziemann P
    Rev Sci Instrum; 2013 Aug; 84(8):084904. PubMed ID: 24007093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3
    Singhal D; Paterson J; Tainoff D; Richard J; Ben-Khedim M; Gentile P; Cagnon L; Bourgault D; Buttard D; Bourgeois O
    Rev Sci Instrum; 2018 Aug; 89(8):084902. PubMed ID: 30184711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous measurement of all thermoelectric properties of bulk materials in the temperature range 300-600 K.
    Kolb H; Dasgupta T; Zabrocki K; Mueller E; de Boor J
    Rev Sci Instrum; 2015 Jul; 86(7):073901. PubMed ID: 26233393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.