These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29390706)

  • 1. Development of a multistage compliant mechanism with new boundary constraint.
    Ling M; Cao J; Jiang Z; Li Q
    Rev Sci Instrum; 2018 Jan; 89(1):015009. PubMed ID: 29390706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, Modeling, and Testing of a Novel XY Piezo-Actuated Compliant Micro-Positioning Stage.
    Zhang Q; Zhao J; Shen X; Xiao Q; Huang J; Wang Y
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Analysis of a Hybrid Displacement Amplifier Supporting a High-Performance Piezo Jet Dispenser.
    Zhou S; Yan P
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and integrated stroke sensing of a high-response piezoelectric direct-drive valve enhanced by push-pull compliant mechanisms.
    Deng L; Ling M
    Rev Sci Instrum; 2022 Mar; 93(3):035008. PubMed ID: 35364978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and modeling of a piezo-driven three-dimensional bridge-type amplification mechanism with input/output guiding constraint.
    Zhou K; Liu P; Lu S; Yan P
    Rev Sci Instrum; 2022 Feb; 93(2):025005. PubMed ID: 35232159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A parallelogram-based compliant remote-center-of-motion stage for active parallel alignment.
    Qu J; Chen W; Zhang J
    Rev Sci Instrum; 2014 Sep; 85(9):095112. PubMed ID: 25273777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Piezo-Driven Compliant Bridge Mechanisms: General Analytical Equations and Optimization of Displacement Amplification.
    Wei H; Shirinzadeh B; Li W; Clark L; Pinskier J; Wang Y
    Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 30400430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Objective Topology Optimization of a Compliant Parallel Planar Mechanism under Combined Load Cases and Constraints.
    Wang G; Zhu D; Liu N; Zhao W
    Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stiffness modeling of compliant parallel mechanisms and applications in the performance analysis of a decoupled parallel compliant stage.
    Jiang Y; Li TM; Wang LP
    Rev Sci Instrum; 2015 Sep; 86(9):095109. PubMed ID: 26429482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X Y parallel compliant stage with compact configuration.
    Choi KB; Lee JJ; Kim GH; Lim HJ
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5245-51. PubMed ID: 22966553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and optimization of two-degree-of-freedom parallel four pure-slide- and four parallel quadrilateral-pair precision positioning platform.
    Ji HW; Lv B; Li TY; Yang F; Qi AQ; Wu X; Ni J
    Rev Sci Instrum; 2022 Oct; 93(10):105001. PubMed ID: 36319360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized element-node complete model and its implementation for the optimal design of a piezo-actuated compliant amplifier.
    Wang K; Huang P; Liu Q; Zhu L; Zhu Z
    Rev Sci Instrum; 2023 Aug; 94(8):. PubMed ID: 38065156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage.
    Li CX; Gu GY; Yang MJ; Zhu LM
    Rev Sci Instrum; 2013 Dec; 84(12):125111. PubMed ID: 24387472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal design and experiment of a three-axis out-of-plane nano positioning stage using a new compact bridge-type displacement amplifier.
    Lee HJ; Kim HC; Kim HY; Gweon DG
    Rev Sci Instrum; 2013 Nov; 84(11):115103. PubMed ID: 24289433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a locust leg-like compliant constant-force mechanism supporting large-scale damage-free manipulation.
    Zhang C; Lu S; Liu P; Yan P
    Rev Sci Instrum; 2023 Nov; 94(11):. PubMed ID: 38019110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel piezoelectrically actuated 2-DoF compliant micro/nano-positioning stage with multi-level amplification.
    Zhu WL; Zhu Z; Shi Y; Chen X; He Y; Ehmann KF; Ju BF
    Rev Sci Instrum; 2016 Oct; 87(10):105006. PubMed ID: 27802713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A survey on the mechanical design for piezo-actuated compliant micro-positioning stages.
    Ding B; Li X; Li C; Li Y; Chen SC
    Rev Sci Instrum; 2023 Oct; 94(10):. PubMed ID: 37812048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Modeling of a Novel Tripteron-Inspired Triaxial Parallel Compliant Manipulator with Compact Structure.
    Xie Y; Li Y; Cheung C
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite-time sliding surface constrained control for a robot manipulator with an unknown deadzone and disturbance.
    Ik Han S; Lee J
    ISA Trans; 2016 Nov; 65():307-318. PubMed ID: 27542438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.