These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 2939072)
41. Identification of omega-conotoxin binding sites on adrenal medullary membranes: possibility of multiple calcium channels in chromaffin cells. Jan CR; Titeler M; Schneider AS J Neurochem; 1990 Jan; 54(1):355-8. PubMed ID: 2152797 [TBL] [Abstract][Full Text] [Related]
42. Analogies and differences between omega-conotoxins MVIIC and MVIID: binding sites and functions in bovine chromaffin cells. Gandía L; Lara B; Imperial JS; Villarroya M; Albillos A; Maroto R; García AG; Olivera BM Pflugers Arch; 1997 Dec; 435(1):55-64. PubMed ID: 9359903 [TBL] [Abstract][Full Text] [Related]
43. Dihydropyridine block of omega-agatoxin IVA- and omega-conotoxin GVIA-sensitive Ca2+ channels in rat pituitary melanotropic cells. Mansvelder HD; Stoof JC; Kits KS Eur J Pharmacol; 1996 Sep; 311(2-3):293-304. PubMed ID: 8891612 [TBL] [Abstract][Full Text] [Related]
44. The effects of verapamil, prenylamine, flunarizine and cinnarizine on coronary artery occlusion-induced arrhythmias in anaesthetized rats. Fagbemi O; Kane KA; McDonald FM; Parratt JR; Rothaul AL Br J Pharmacol; 1984 Sep; 83(1):299-304. PubMed ID: 6487894 [TBL] [Abstract][Full Text] [Related]
45. Characteristics of the inhibitory effect of calmodulin on specific [125i]omega-conotoxin GVIA binding to crude membranes from chick brain. Ichida S; Abe J; Zhang YA; Sugihara K; Imoto K; Wada T; Fujita N; Sohma H Neurochem Res; 2000 Dec; 25(12):1629-35. PubMed ID: 11152392 [TBL] [Abstract][Full Text] [Related]
46. Effects of Ca2+ channel blockers on Ca2+ translocation across synaptosomal membranes. Carvalho CA; Coutinho OP; Carvalho AP J Neurochem; 1986 Dec; 47(6):1774-84. PubMed ID: 2430061 [TBL] [Abstract][Full Text] [Related]
47. Mu-opioid and GABA(B) receptors modulate different types of Ca2+ currents in rat nodose ganglion neurons. Rusin KI; Moises HC Neuroscience; 1998 Aug; 85(3):939-56. PubMed ID: 9639286 [TBL] [Abstract][Full Text] [Related]
48. Histamine stimulated synaptosomal Ca2+ uptake through activation of calcium channels. Rodriguez R; Toledo A; Brandner R; Sabrià J; Rodriguez J; Blanco I Biochem Biophys Res Commun; 1988 Jun; 153(3):1136-43. PubMed ID: 2455514 [TBL] [Abstract][Full Text] [Related]
49. Solubilization of the calcium antagonist receptor from rat brain. Curtis BM; Catterall WA J Biol Chem; 1983 Jun; 258(12):7280-3. PubMed ID: 6305932 [TBL] [Abstract][Full Text] [Related]
50. Effects of temperature and allosteric modulators on [3H] nitrendipine binding: methods for detecting potential Ca2+ channel blockers. Holck M; Fischli W; Hengartner U J Recept Res; 1984; 4(1-6):557-69. PubMed ID: 6084712 [TBL] [Abstract][Full Text] [Related]
51. K(+)-Evoked [(3)H]D-aspartate release in rat spinal cord synaptosomes: modulation by neuropeptide Y and calcium channel antagonists. Martire M; Altobelli D; Maurizi S; Preziosi P; Fuxe K J Neurosci Res; 2000 Dec; 62(5):722-9. PubMed ID: 11104511 [TBL] [Abstract][Full Text] [Related]
52. BAY K 8644, a 1,4-dihydropyridine Ca2+ channel activator: dissociation of binding and functional effects in brain synaptosomes. Rampe D; Janis RA; Triggle DJ J Neurochem; 1984 Dec; 43(6):1688-92. PubMed ID: 6208338 [TBL] [Abstract][Full Text] [Related]
53. The developing chick brain shows a dramatic increase in the omega-conotoxin binding sites around the hatching period. Azimi-Zonooz A; Litzinger MJ Int J Dev Neurosci; 1992 Oct; 10(5):447-51. PubMed ID: 1337241 [TBL] [Abstract][Full Text] [Related]
54. Effects of calcium antagonists on KCl-evoked calcium uptake by rat cortical synaptosomes. Wei JW; Chiang DH Gen Pharmacol; 1986; 17(3):261-5. PubMed ID: 3721183 [TBL] [Abstract][Full Text] [Related]
55. Nifedipine and flunarizine block amphetamine-induced behavioral stimulation in mice. Grebb JA Life Sci; 1986 Jun; 38(26):2375-81. PubMed ID: 3724362 [TBL] [Abstract][Full Text] [Related]
56. Evaluation of calcium entry blockers in several models of immediate hypersensitivity. Ritchie DM; Sierchio JN; Bishop CM; Hedli CC; Levinson SL; Capetola RJ J Pharmacol Exp Ther; 1984 Jun; 229(3):690-5. PubMed ID: 6202868 [TBL] [Abstract][Full Text] [Related]
57. The spider toxin omega-Aga IIIA defines a high affinity site on neuronal high voltage-activated calcium channels. Yan L; Adams ME J Biol Chem; 2000 Jul; 275(28):21309-16. PubMed ID: 10787403 [TBL] [Abstract][Full Text] [Related]
58. Characteristics of specific 125I-omega-conotoxin GVIA binding and 125I-omega-conotoxin GVIA labeling using bifunctional crosslinkers in crude membranes from chick whole brain. Ichida S; Wada T; Akimoto T; Kasamatsu Y; Tahara M; Hasimoto K Biochim Biophys Acta; 1995 Jan; 1233(1):57-67. PubMed ID: 7833350 [TBL] [Abstract][Full Text] [Related]
59. Effect of calcium antagonist drugs on calcium currents in mammalian skeletal muscle fibers. Walsh KB; Bryant SH; Schwartz A J Pharmacol Exp Ther; 1986 Feb; 236(2):403-7. PubMed ID: 2418195 [TBL] [Abstract][Full Text] [Related]
60. Molecular pharmacology of the calcium channel: evidence for subtypes, multiple drug-receptor sites, channel subunits, and the development of a radioiodinated 1,4-dihydropyridine calcium channel label, [125I]iodipine. Glossmann H; Ferry DR; Goll A; Rombusch M J Cardiovasc Pharmacol; 1984; 6 Suppl 4():S608-21. PubMed ID: 6083403 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]