These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 29390746)

  • 41. Improving misalignment for feedback path estimation in hearing aid by multiple short-time noise injections.
    Khoubrouy SA; Panahi IM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5230-3. PubMed ID: 23367108
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of deep marginal feedback cancellation for hearing aids using speech and music.
    Zheng C; Xu C; Wang M; Li X; Moore BCJ
    Trends Hear; 2023; 27():23312165231192290. PubMed ID: 37551089
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Order selection of the hearing aid Feedback Canceller filter based on its impulse response energy.
    Khoubrouy SA; Panahi IM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5218-21. PubMed ID: 23367105
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Speech enhancement in discontinuous transmission systems using the constrained-stability least-mean-squares algorithm.
    Górriz JM; Ramírez J; Cruces-Alvarez S; Erdogmus D; Puntonet CG; Lang EW
    J Acoust Soc Am; 2008 Dec; 124(6):3669-83. PubMed ID: 19206795
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hearing aid technology: model-based concepts and assessment.
    Kollmeier B
    Int J Audiol; 2018 Jun; 57(sup3):S1-S2. PubMed ID: 29338464
    [No Abstract]   [Full Text] [Related]  

  • 46. Hearing aid technology: model-based concepts and assessment.
    Johnson EE
    Int J Audiol; 2018 Jun; 57(sup3):S29-S30. PubMed ID: 28635502
    [No Abstract]   [Full Text] [Related]  

  • 47. Effect of Energy Equalization on the Intelligibility of Speech in Fluctuating Background Interference for Listeners With Hearing Impairment.
    D'Aquila LA; Desloge JG; Reed CM; Braida LD
    Trends Hear; 2017; 21():2331216517710354. PubMed ID: 28602128
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Large-scale training to increase speech intelligibility for hearing-impaired listeners in novel noises.
    Chen J; Wang Y; Yoho SE; Wang D; Healy EW
    J Acoust Soc Am; 2016 May; 139(5):2604. PubMed ID: 27250154
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm.
    Fink N; Furst M; Muchnik C
    J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling the Intelligibility Benefit of Active Noise Cancelation in Hearing Devices That Improve Signal-to-Noise Ratio.
    Sabin AT; McElhone D; Gauger D; Rabinowitz B
    Trends Hear; 2024; 28():23312165241260029. PubMed ID: 38831646
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Approximated affine projection algorithm for feedback cancellation in hearing aids.
    Lee S; Kim IY; Park YC
    Comput Methods Programs Biomed; 2007 Sep; 87(3):254-61. PubMed ID: 17644214
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Auditory inspired machine learning techniques can improve speech intelligibility and quality for hearing-impaired listeners.
    Monaghan JJ; Goehring T; Yang X; Bolner F; Wang S; Wright MC; Bleeck S
    J Acoust Soc Am; 2017 Mar; 141(3):1985. PubMed ID: 28372043
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acoustic, aerodynamic, and perceptual analyses of the voice of cochlear-implanted children.
    Guerrero Lopez HA; Mondain M; Amy de la Bretèque B; Serrafero P; Trottier C; Barkat-Defradas M
    J Voice; 2013 Jul; 27(4):523.e1-17. PubMed ID: 23809572
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acoustic feedback path modeling for hearing aids: Comparison of physical position based and position independent models.
    Sankowsky-Rothe T; Schepker H; Doclo S; Blau M
    J Acoust Soc Am; 2020 Jan; 147(1):85. PubMed ID: 32006989
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessing the efficacy of hearing-aid amplification using a phoneme test.
    Scheidiger C; Allen JB; Dau T
    J Acoust Soc Am; 2017 Mar; 141(3):1739. PubMed ID: 28372055
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Speech based transmission index for all: An intelligibility metric for variable hearing ability.
    Mechergui N; Djaziri-Larbi S; Jaïdane M
    J Acoust Soc Am; 2017 Mar; 141(3):1470. PubMed ID: 28372108
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The use of self-report measures to examine changes in perception in response to fittings using different signal processing parameters.
    Anderson M; Rallapalli V; Schoof T; Souza P; Arehart K
    Int J Audiol; 2018 Nov; 57(11):809-815. PubMed ID: 30052097
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functionality of hearing aids: state-of-the-art and future model-based solutions.
    Kollmeier B; Kiessling J
    Int J Audiol; 2018 Jun; 57(sup3):S3-S28. PubMed ID: 27951738
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using a signal cancellation technique to assess adaptive directivity of hearing aids.
    Wu YH; Bentler RA
    J Acoust Soc Am; 2007 Jul; 122(1):496-511. PubMed ID: 17614507
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Perceptual and Model-Based Evaluation of Ideal Time-Frequency Noise Reduction in Hearing-Impaired Listeners.
    Koning R; Bruce IC; Denys S; Wouters J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):687-697. PubMed ID: 29522412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.