These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 29390829)
1. A new collocation-based multi-configuration time-dependent Hartree (MCTDH) approach for solving the Schrödinger equation with a general potential energy surface. Wodraszka R; Carrington T J Chem Phys; 2018 Jan; 148(4):044115. PubMed ID: 29390829 [TBL] [Abstract][Full Text] [Related]
2. A pruned collocation-based multiconfiguration time-dependent Hartree approach using a Smolyak grid for solving the Schrödinger equation with a general potential energy surface. Wodraszka R; Carrington T J Chem Phys; 2019 Apr; 150(15):154108. PubMed ID: 31005102 [TBL] [Abstract][Full Text] [Related]
3. A rectangular collocation multi-configuration time-dependent Hartree (MCTDH) approach with time-independent points for calculations on general potential energy surfaces. Wodraszka R; Carrington T J Chem Phys; 2021 Mar; 154(11):114107. PubMed ID: 33752363 [TBL] [Abstract][Full Text] [Related]
4. A collocation-based multi-configuration time-dependent Hartree method using mode combination and improved relaxation. Wodraszka R; Carrington T J Chem Phys; 2020 Apr; 152(16):164117. PubMed ID: 32357767 [TBL] [Abstract][Full Text] [Related]
5. Using a pruned basis and a sparse collocation grid with more points than basis functions to do efficient and accurate MCTDH calculations with general potential energy surfaces. Wodraszka R; Carrington T J Chem Phys; 2024 Jun; 160(21):. PubMed ID: 38836450 [TBL] [Abstract][Full Text] [Related]
6. Systematically expanding nondirect product bases within the pruned multi-configuration time-dependent Hartree (MCTDH) method: A comparison with multi-layer MCTDH. Wodraszka R; Carrington T J Chem Phys; 2017 May; 146(19):194105. PubMed ID: 28527461 [TBL] [Abstract][Full Text] [Related]
7. Systematic and variational truncation of the configuration space in the multiconfiguration time-dependent Hartree method: The MCTDH[n] hierarchy. Madsen NK; Hansen MB; Worth GA; Christiansen O J Chem Phys; 2020 Feb; 152(8):084101. PubMed ID: 32113340 [TBL] [Abstract][Full Text] [Related]
8. Using a pruned, nondirect product basis in conjunction with the multi-configuration time-dependent Hartree (MCTDH) method. Wodraszka R; Carrington T J Chem Phys; 2016 Jul; 145(4):044110. PubMed ID: 27475351 [TBL] [Abstract][Full Text] [Related]
9. Using rectangular collocation with finite difference derivatives to solve electronic Schrödinger equation. Manzhos S; Carrington T J Chem Phys; 2018 Nov; 149(20):204105. PubMed ID: 30501260 [TBL] [Abstract][Full Text] [Related]
10. Using Collocation to Solve the Schrödinger Equation. Manzhos S; Ihara M; Carrington T J Chem Theory Comput; 2023 Mar; 19(6):1641-1656. PubMed ID: 36974479 [TBL] [Abstract][Full Text] [Related]
11. Using collocation and a hierarchical basis to solve the vibrational Schrödinger equation. Zak EJ; Carrington T J Chem Phys; 2019 May; 150(20):204108. PubMed ID: 31153182 [TBL] [Abstract][Full Text] [Related]
12. Using collocation to study the vibrational dynamics of molecules. Carrington T Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119158. PubMed ID: 33218875 [TBL] [Abstract][Full Text] [Related]
13. Using an internal coordinate Gaussian basis and a space-fixed Cartesian coordinate kinetic energy operator to compute a vibrational spectrum with rectangular collocation. Manzhos S; Carrington T J Chem Phys; 2016 Dec; 145(22):224110. PubMed ID: 27984898 [TBL] [Abstract][Full Text] [Related]
14. Communication: favorable dimensionality scaling of rectangular collocation with adaptable basis functions up to 7 dimensions. Manzhos S; Chan M; Carrington T J Chem Phys; 2013 Aug; 139(5):051101. PubMed ID: 23927236 [TBL] [Abstract][Full Text] [Related]
15. Iterative diagonalization in the multiconfigurational time-dependent Hartree approach: ro-vibrational eigenstates. Wodraszka R; Manthe U J Phys Chem A; 2013 Aug; 117(32):7246-55. PubMed ID: 23565665 [TBL] [Abstract][Full Text] [Related]
16. A multi-dimensional Smolyak collocation method in curvilinear coordinates for computing vibrational spectra. Avila G; Carrington T J Chem Phys; 2015 Dec; 143(21):214108. PubMed ID: 26646870 [TBL] [Abstract][Full Text] [Related]
17. Computing vibrational spectra using a new collocation method with a pruned basis and more points than basis functions: Avoiding quadrature. Simmons J; Carrington T J Chem Phys; 2023 Apr; 158(14):144115. PubMed ID: 37061500 [TBL] [Abstract][Full Text] [Related]
18. Machine Learning Optimization of the Collocation Point Set for Solving the Kohn-Sham Equation. Ku J; Kamath A; Carrington T; Manzhos S J Phys Chem A; 2019 Dec; 123(49):10631-10642. PubMed ID: 31724862 [TBL] [Abstract][Full Text] [Related]