These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 29390829)
21. The multi-configurational time-dependent Hartree approach in optimized second quantization: Imaginary time propagation and particle number conservation. Weike T; Manthe U J Chem Phys; 2020 Jan; 152(3):034101. PubMed ID: 31968947 [TBL] [Abstract][Full Text] [Related]
22. Solving the vibrational Schrödinger equation using bases pruned to include strongly coupled functions and compatible quadratures. Avila G; Carrington T J Chem Phys; 2012 Nov; 137(17):174108. PubMed ID: 23145718 [TBL] [Abstract][Full Text] [Related]
24. Resonances of HCO Computed Using an Approach Based on the Multiconfiguration Time-Dependent Hartree Method. Ndengué SA; Dawes R; Gatti F; Meyer HD J Phys Chem A; 2015 Dec; 119(50):12043-51. PubMed ID: 26070014 [TBL] [Abstract][Full Text] [Related]
25. Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 → H2 + CH3 rate constants for different potentials. Welsch R; Manthe U J Chem Phys; 2012 Dec; 137(24):244106. PubMed ID: 23277927 [TBL] [Abstract][Full Text] [Related]
26. Computing the Anharmonic Vibrational Spectrum of UF6 in 15 Dimensions with an Optimized Basis Set and Rectangular Collocation. Manzhos S; Carrington T; Laverdure L; Mosey N J Phys Chem A; 2015 Sep; 119(36):9557-67. PubMed ID: 26295217 [TBL] [Abstract][Full Text] [Related]
27. A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces. Manthe U J Chem Phys; 2008 Apr; 128(16):164116. PubMed ID: 18447430 [TBL] [Abstract][Full Text] [Related]
28. On the multi-layer multi-configurational time-dependent Hartree approach for bosons and fermions. Manthe U; Weike T J Chem Phys; 2017 Feb; 146(6):064117. PubMed ID: 28201897 [TBL] [Abstract][Full Text] [Related]
29. On regularizing the ML-MCTDH equations of motion. Wang H; Meyer HD J Chem Phys; 2018 Jul; 149(4):044119. PubMed ID: 30068178 [TBL] [Abstract][Full Text] [Related]
30. Layered discrete variable representations and their application within the multiconfigurational time-dependent Hartree approach. Manthe U J Chem Phys; 2009 Feb; 130(5):054109. PubMed ID: 19206960 [TBL] [Abstract][Full Text] [Related]
31. Computing vibrational energy levels of CH Avila G; Carrington T J Chem Phys; 2017 Oct; 147(14):144102. PubMed ID: 29031264 [TBL] [Abstract][Full Text] [Related]
32. Nonproduct quadrature grids for solving the vibrational Schrödinger equation. Avila G; Carrington T J Chem Phys; 2009 Nov; 131(17):174103. PubMed ID: 19894994 [TBL] [Abstract][Full Text] [Related]
33. Wavepacket dynamics and the multi-configurational time-dependent Hartree approach. Manthe U J Phys Condens Matter; 2017 Jun; 29(25):253001. PubMed ID: 28430111 [TBL] [Abstract][Full Text] [Related]
34. Vibrational energy levels of the simplest Criegee intermediate (CH2OO) from full-dimensional Lanczos, MCTDH, and MULTIMODE calculations. Yu HG; Ndengue S; Li J; Dawes R; Guo H J Chem Phys; 2015 Aug; 143(8):084311. PubMed ID: 26328847 [TBL] [Abstract][Full Text] [Related]
35. Multidimensional time-dependent discrete variable representations in multiconfiguration Hartree calculations. van Harrevelt R; Manthe U J Chem Phys; 2005 Aug; 123(6):64106. PubMed ID: 16122299 [TBL] [Abstract][Full Text] [Related]
37. Calculation of state-to-state cross sections for triatomic reaction by the multi-configuration time-dependent Hartree method. Zhao B; Zhang DH; Lee SY; Sun Z J Chem Phys; 2014 Apr; 140(16):164108. PubMed ID: 24784254 [TBL] [Abstract][Full Text] [Related]
38. Improved on-the-Fly MCTDH Simulations with Many-Body-Potential Tensor Decomposition and Projection Diabatization. Richings GW; Robertson C; Habershon S J Chem Theory Comput; 2019 Feb; 15(2):857-870. PubMed ID: 30521337 [TBL] [Abstract][Full Text] [Related]
39. Reducing the cost of using collocation to compute vibrational energy levels: Results for CH Avila G; Carrington T J Chem Phys; 2017 Aug; 147(6):064103. PubMed ID: 28810786 [TBL] [Abstract][Full Text] [Related]
40. Regularizing the MCTDH equations of motion through an optimal choice on-the-fly (i.e., spawning) of unoccupied single-particle functions. Mendive-Tapia D; Meyer HD J Chem Phys; 2020 Dec; 153(23):234114. PubMed ID: 33353345 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]