These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29390837)

  • 1. Chemical ordering and crystal nucleation at the liquid surface: A comparison of Cu
    Tang C; Harrowell P
    J Chem Phys; 2018 Jan; 148(4):044509. PubMed ID: 29390837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition susceptibility and the role of one, two, and three-body interactions in glass forming alloys: Cu
    Tang C; Harrowell P
    J Chem Phys; 2018 Jun; 148(22):224502. PubMed ID: 29907012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization of highly supercooled glass-forming alloys induced by anomalous surface wetting.
    Bi Q; Guo C; Lü Y
    Phys Chem Chem Phys; 2020 Feb; 22(8):4815-4822. PubMed ID: 32068220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalously slow crystal growth of the glass-forming alloy CuZr.
    Tang C; Harrowell P
    Nat Mater; 2013 Jun; 12(6):507-11. PubMed ID: 23624630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beating Homogeneous Nucleation and Tuning Atomic Ordering in Glass-Forming Metals by Nanocalorimetry.
    Zhao B; Yang B; Abyzov AS; Schmelzer JWP; Rodríguez-Viejo J; Zhai Q; Schick C; Gao Y
    Nano Lett; 2017 Dec; 17(12):7751-7760. PubMed ID: 29111758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleation instability in supercooled Cu-Zr-Al glass-forming liquids.
    Ryltsev RE; Klumov BA; Chtchelkatchev NM; Shunyaev KY
    J Chem Phys; 2018 Oct; 149(16):164502. PubMed ID: 30384697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal nucleation and growth processes in Cu-rich glass-forming Cu-Zr alloys.
    Lu AKA; Louzguine-Luzgin DV
    J Chem Phys; 2022 Jul; 157(1):014506. PubMed ID: 35803804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compositional landscape for glass formation in metal alloys.
    Na JH; Demetriou MD; Floyd M; Hoff A; Garrett GR; Johnson WL
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9031-6. PubMed ID: 24927600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial free energy controlling glass-forming ability of Cu-Zr alloys.
    Kang DH; Zhang H; Yoo H; Lee HH; Lee S; Lee GW; Lou H; Wang X; Cao Q; Zhang D; Jiang J
    Sci Rep; 2014 Jun; 4():5167. PubMed ID: 24893772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impurity-driven nanocrystallization of Zr-based bulk amorphous alloys.
    Akdeniz MV; Mekhrabov AO
    J Nanosci Nanotechnol; 2008 Feb; 8(2):894-900. PubMed ID: 18464424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal growth in deeply undercooled Ni
    Yang Q; Liu H; Peng H
    J Chem Phys; 2021 May; 154(19):194503. PubMed ID: 34240901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys.
    Kwiatkowski da Silva A; Ponge D; Peng Z; Inden G; Lu Y; Breen A; Gault B; Raabe D
    Nat Commun; 2018 Mar; 9(1):1137. PubMed ID: 29555984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drastic enhancement of crystal nucleation in a molecular liquid by its liquid-liquid transition.
    Kurita R; Tanaka H
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):24949-24955. PubMed ID: 31767771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization Behavior of Al
    Liu X; Wang X; Si Y; Zhong X; Han F
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30691099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study on the composition location of the best glass formers in Cu-Zr amorphous alloys.
    Wang D; Zhao SJ; Liu LM
    J Phys Chem A; 2015 Jan; 119(4):806-14. PubMed ID: 25547898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentration dependence of the crystal nucleation kinetics in undercooled Cu-Ge melts.
    da Silva Pinto MW; Peterlechner M; Wilde G
    J Chem Phys; 2022 Dec; 157(21):214502. PubMed ID: 36511551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation dependence of heterogeneous nucleation at the Cu-Pb solid-liquid interface.
    Palafox-Hernandez JP; Laird BB
    J Chem Phys; 2016 Dec; 145(21):211914. PubMed ID: 28799366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay of structural and dynamical heterogeneity in the nucleation mechanism in nickel.
    Díaz Leines G; Michaelides A; Rogal J
    Faraday Discuss; 2022 Jul; 235(0):406-415. PubMed ID: 35388822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-liquid surface tensions of critical nuclei and nucleation barriers from a phase-field-crystal study of a model binary alloy using finite system sizes.
    Choudhary MA; Kundin J; Emmerich H; Oettel M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022403. PubMed ID: 25215738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism.
    Lupi L; Peters B; Molinero V
    J Chem Phys; 2016 Dec; 145(21):211910. PubMed ID: 28799353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.