These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2939115)

  • 1. Quantitative pulsed Doppler measurement of common femoral artery blood flow variables during postocclusive reactive hyperemia.
    Marquis C; Meister JJ; Mooser E; Mosimann R
    J Clin Ultrasound; 1986; 14(3):165-70. PubMed ID: 2939115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive echo-Doppler duplex measurements of common femoral artery blood flow variables during supine exercise and post-occlusive reactive hyperemia.
    Sutton MF; Greene ER; Johnson E; Reilly PA
    ISA Trans; 1983; 22(1):47-57. PubMed ID: 6220999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common femoral artery volume flow in peripheral vascular disease.
    Lewis P; Psaila JV; Morgan RH; Davies WT; Woodcock JP
    Br J Surg; 1990 Feb; 77(2):183-7. PubMed ID: 2317678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive echo-doppler duplex measurements of common femoral artery blood flow variables during supine exercise and post-occlusive reactive hyperemia.
    Sutton MF; Greene ER; Johnson EC; Reilly PA
    Biomed Sci Instrum; 1982; 18():51-65. PubMed ID: 7150693
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison between segmental and selective blood flow volume of the lower limbs: a plethysmographic and ultrasonic study of normal subjects at rest.
    Marquis C; Meister JJ; Mooser E; Mosimann R
    Angiology; 1983 Aug; 34(8):546-52. PubMed ID: 6614584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in phasic femoral artery flow induced by various stimuli: a study with percutaneous pulsed Doppler ultrasound.
    Mahler F; Brunner HH; Bollinger A; Casty M; Anliker M
    Cardiovasc Res; 1977 Sep; 11(5):254-60. PubMed ID: 589631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of aortoiliac obstructive disease by Doppler spectrum analysis of blood flow velocities in the common femoral artery at rest and during reactive hyperemia.
    van Asten WN; Beijneveld WJ; Pieters BR; van Lier HJ; Wijn PF; Skotnicki SH
    Surgery; 1991 May; 109(5):633-9. PubMed ID: 2020908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 5. Lower extremity blood flow and hyperemic responses to occlusion are augmented by ambulation training.
    Nash MS; Jacobs PL; Montalvo BM; Klose KJ; Guest RS; Needham-Shropshire BM
    Arch Phys Med Rehabil; 1997 Aug; 78(8):808-14. PubMed ID: 9344298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative pulsed Doppler measurement of common femoral artery blood flow variables during postocclusive reactive hyperemia.
    J Clin Ultrasound; 1987 Sep; 15(7):495-7. PubMed ID: 3134456
    [No Abstract]   [Full Text] [Related]  

  • 10. Noninvasive quantification of postocclusive reactive hyperemia in mouse thigh muscle by near-infrared diffuse correlation spectroscopy.
    Cheng R; Zhang X; Daugherty A; Shin H; Yu G
    Appl Opt; 2013 Oct; 52(30):7324-30. PubMed ID: 24216586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in the rheological flow profile in conduit femoral artery during rhythmic thigh muscle contractions in humans.
    Osada T; Rådegran G
    Jpn J Physiol; 2005 Feb; 55(1):19-28. PubMed ID: 15796786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducibility of different laser Doppler fluximetry parameters of postocclusive reactive hyperemia in human forearm skin.
    Yvonne-Tee GB; Rasool AH; Halim AS; Rahman AR
    J Pharmacol Toxicol Methods; 2005; 52(2):286-92. PubMed ID: 16125628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower extremity blood flow and responses to occlusion ischemia differ in exercise-trained and sedentary tetraplegic persons.
    Nash MS; Montalvo BM; Applegate B
    Arch Phys Med Rehabil; 1996 Dec; 77(12):1260-5. PubMed ID: 8976309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulsed Doppler assessment of normal human femoral artery velocity patterns.
    Blackshear WM; Phillips DJ; Strandness DE
    J Surg Res; 1979 Aug; 27(2):73-83. PubMed ID: 156817
    [No Abstract]   [Full Text] [Related]  

  • 15. Pulsed Doppler assessment of deep femoral artery hemodynamics: a preliminary report.
    Marquis C; Meister JJ; Mooser E; Mosimann R
    Angiology; 1984 May; 35(5):269-75. PubMed ID: 6721250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and comparison of pressure gradients and ratios for predicting iliac stenosis.
    Archie JP
    Ann Vasc Surg; 1994 May; 8(3):271-80. PubMed ID: 8043361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The value of power frequency spectrum analysis in the identification of aortoiliac artery disease.
    Harward TR; Bernstein EF; Fronek A
    J Vasc Surg; 1987 Jun; 5(6):803-13. PubMed ID: 3295306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of strain gauge plethysmography and Doppler ultrasound in patients with occlusive arterial disease of the lower extremities.
    Breslau PJ; Slot HB; Greep JM
    Angiology; 1981 Dec; 32(12):840-5. PubMed ID: 7332112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of posture on popliteal artery hemodynamics.
    Delis KT; Nicolaides AN; Stansby G
    Arch Surg; 2000 Mar; 135(3):265-9. PubMed ID: 10722026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periodic cutaneous blood flow during postocclusive reactive hyperemia.
    Wilkin JK
    Am J Physiol; 1986 May; 250(5 Pt 2):H765-8. PubMed ID: 3706552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.