These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates. Hinne M; Janssen RJ; Heskes T; van Gerven MA PLoS Comput Biol; 2015 Nov; 11(11):e1004534. PubMed ID: 26540089 [TBL] [Abstract][Full Text] [Related]
7. Dynamic effective connectivity in resting state fMRI. Park HJ; Friston KJ; Pae C; Park B; Razi A Neuroimage; 2018 Oct; 180(Pt B):594-608. PubMed ID: 29158202 [TBL] [Abstract][Full Text] [Related]
8. Functional connectivity and structural covariance between regions of interest can be measured more accurately using multivariate distance correlation. Geerligs L; Cam-Can ; Henson RN Neuroimage; 2016 Jul; 135():16-31. PubMed ID: 27114055 [TBL] [Abstract][Full Text] [Related]
9. Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks. Colclough GL; Woolrich MW; Harrison SJ; Rojas López PA; Valdes-Sosa PA; Smith SM Neuroimage; 2018 Sep; 178():370-384. PubMed ID: 29746906 [TBL] [Abstract][Full Text] [Related]
10. Predicting individual brain functional connectivity using a Bayesian hierarchical model. Dai T; Guo Y; Neuroimage; 2017 Feb; 147():772-787. PubMed ID: 27915121 [TBL] [Abstract][Full Text] [Related]
15. A Hierarchical Bayesian Mixture Model Approach for Analysis of Resting-State Functional Brain Connectivity: An Alternative to Thresholding. Gorbach T; Lundquist A; de Luna X; Nyberg L; Salami A Brain Connect; 2020 Jun; 10(5):202-211. PubMed ID: 32308015 [TBL] [Abstract][Full Text] [Related]
16. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Birn RM; Molloy EK; Patriat R; Parker T; Meier TB; Kirk GR; Nair VA; Meyerand ME; Prabhakaran V Neuroimage; 2013 Dec; 83():550-8. PubMed ID: 23747458 [TBL] [Abstract][Full Text] [Related]
17. Structural Basis of Large-Scale Functional Connectivity in the Mouse. Grandjean J; Zerbi V; Balsters JH; Wenderoth N; Rudin M J Neurosci; 2017 Aug; 37(34):8092-8101. PubMed ID: 28716961 [TBL] [Abstract][Full Text] [Related]
18. Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI. Taghia J; Ryali S; Chen T; Supekar K; Cai W; Menon V Neuroimage; 2017 Jul; 155():271-290. PubMed ID: 28267626 [TBL] [Abstract][Full Text] [Related]
19. A predictor-informed multi-subject bayesian approach for dynamic functional connectivity. Lee J; Hussain S; Warnick R; Vannucci M; Menchaca I; Seitz AR; Hu X; Peters MAK; Guindani M PLoS One; 2024; 19(5):e0298651. PubMed ID: 38753655 [TBL] [Abstract][Full Text] [Related]
20. Evaluating the sensitivity of functional connectivity measures to motion artifact in resting-state fMRI data. Mahadevan AS; Tooley UA; Bertolero MA; Mackey AP; Bassett DS Neuroimage; 2021 Nov; 241():118408. PubMed ID: 34284108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]