These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29391401)

  • 1. Silicon based mid-IR super absorber using hyperbolic metamaterial.
    Desouky M; Mahmoud AM; Swillam MA
    Sci Rep; 2018 Feb; 8(1):2036. PubMed ID: 29391401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All silicon MIR super absorber using fractal metasurfaces.
    Ali AM; Ghanim AM; Othman M; Swillam MA
    Sci Rep; 2023 Sep; 13(1):15545. PubMed ID: 37730905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband MIR harvester using silicon nanostructures.
    Magdi S; El-Diwany F; A Swillam M
    Sci Rep; 2019 Apr; 9(1):5829. PubMed ID: 30967574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths.
    Nguyen DM; Lee D; Rho J
    Sci Rep; 2017 Jun; 7(1):2611. PubMed ID: 28572672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reconfigurable hyperbolic metamaterial perfect absorber.
    Behera JK; Liu K; Lian M; Cao T
    Nanoscale Adv; 2021 Mar; 3(6):1758-1766. PubMed ID: 36132556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Combined Spectral Response of a MEMS Metamaterial Absorber for the Mid-IR and Its Sub-Wavelength Fabrication Residual Array of Holes.
    Wolffenbuttel RF; Ghaderi MA
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free space super focusing using all dielectric hyperbolic metamaterial.
    Salama NA; Desouky M; Obayya SSA; Swillam MA
    Sci Rep; 2020 Jul; 10(1):11529. PubMed ID: 32661281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Mid IR focusing in InAs based semiconductor Hyperbolic Metamaterial.
    Desouky M; Mahmoud AM; Swillam MA
    Sci Rep; 2017 Nov; 7(1):15312. PubMed ID: 29127383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles.
    Riley CT; Smalley JS; Brodie JR; Fainman Y; Sirbuly DJ; Liu Z
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1264-1268. PubMed ID: 28119502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband absorption engineering of hyperbolic metafilm patterns.
    Ji D; Song H; Zeng X; Hu H; Liu K; Zhang N; Gan Q
    Sci Rep; 2014 Mar; 4():4498. PubMed ID: 24675706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion.
    Wu D; Liu C; Liu Y; Xu Z; Yu Z; Yu L; Chen L; Ma R; Zhang J; Ye H
    RSC Adv; 2018 Jun; 8(38):21054-21064. PubMed ID: 35539953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Ultra-Wideband THz/IR Metamaterial Absorber Based on Doped Silicon.
    Liu H; Luo K; Tang S; Peng D; Hu F; Tu L
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30572632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focusing on the Development and Current Status of Metamaterial Absorber by Bibliometric Analysis.
    Li X; Li Q; Wu L; Xu Z; Yao J
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable terahertz metamaterial absorber based on Dirac semimetal films.
    Wang T; Cao M; Zhang H; Zhang Y
    Appl Opt; 2018 Nov; 57(32):9555-9561. PubMed ID: 30461735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tunable wide-angle narrowband perfect absorber based on an optical cavity containing hyperbolic metamaterials.
    Xie Z; Zhu X; Deng Y; Chen Y
    Phys Chem Chem Phys; 2023 Nov; 25(42):29358-29364. PubMed ID: 37877334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse design of metamaterial absorbers based on an equivalent circuit.
    Wang Y; Xuan X; Wu S; Zhu L; Zhu J; Shen X; Zhang Z; Hu C
    Phys Chem Chem Phys; 2022 Aug; 24(34):20390-20399. PubMed ID: 35983852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure.
    Peng Y; Zang X; Zhu Y; Shi C; Chen L; Cai B; Zhuang S
    Opt Express; 2015 Feb; 23(3):2032-9. PubMed ID: 25836074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Designed Broadband Absorber Based on ENZ Mode Incorporating Plasmonic Metasurfaces.
    Dang PT; Le KQ; Lee JH; Nguyen TK
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31590301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene based hyperbolic metamaterial for tunable mid-infrared biosensing.
    Cynthia S; Ahmed R; Islam S; Ali K; Hossain M
    RSC Adv; 2021 Feb; 11(14):7938-7945. PubMed ID: 35423319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-broadband metamaterial absorber from ultraviolet to long-wave infrared based on CMOS-compatible materials.
    Yue S; Hou M; Wang R; Guo H; Hou Y; Li M; Zhang Z; Wang Y; Zhang Z
    Opt Express; 2020 Oct; 28(21):31844-31861. PubMed ID: 33115149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.