These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29391409)

  • 1. A Neuro-Musculo-Skeletal Model for Insects With Data-driven Optimization.
    Guo S; Lin J; Wöhrl T; Liao M
    Sci Rep; 2018 Feb; 8(1):2129. PubMed ID: 29391409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model.
    Ogihara N; Yamazaki N
    Biol Cybern; 2001 Jan; 84(1):1-11. PubMed ID: 11204394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury.
    Paul C; Bellotti M; Jezernik S; Curt A
    Biol Cybern; 2005 Sep; 93(3):153-70. PubMed ID: 16133587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):97-111. PubMed ID: 7662771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of neuro-musculo-skeletal system for human locomotion under position constraint condition.
    Ni J; Hiramatsu S; Kato A
    J Biomech Eng; 2003 Aug; 125(4):499-506. PubMed ID: 12968574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance.
    Taga G
    Biol Cybern; 1998 Jan; 78(1):9-17. PubMed ID: 9485584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple artificial neural network models can generate basic muscle activity patterns for human locomotion at different speeds.
    Prentice SD; Patla AE; Stacey DA
    Exp Brain Res; 1998 Dec; 123(4):474-80. PubMed ID: 9870606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial neural network model for the generation of muscle activation patterns for human locomotion.
    Prentice SD; Patla AE; Stacey DA
    J Electromyogr Kinesiol; 2001 Feb; 11(1):19-30. PubMed ID: 11166605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements.
    Kim H; Sandercock TG; Heckman CJ
    J Neural Eng; 2015 Aug; 12(4):046025. PubMed ID: 26087477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An artificial reflex improves the perturbation-resistance of a human walking simulator.
    Yu W; Ikemoto Y
    Med Biol Eng Comput; 2007 Nov; 45(11):1095-104. PubMed ID: 17909875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory modulation of gait characteristics in human locomotion: A neuromusculoskeletal modeling study.
    Di Russo A; Stanev D; Armand S; Ijspeert A
    PLoS Comput Biol; 2021 May; 17(5):e1008594. PubMed ID: 34010288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of the neuro-musculo-skeletal system for human locomotion. II Real-time adaptability under various constraints.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):113-21. PubMed ID: 7662764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of human gait trajectories during the SSP using a neuromusculoskeletal modeling: A challenge for parametric optimization.
    Rahmati SM; Rostami M; Beigzadeh B
    Technol Health Care; 2018; 26(6):889-907. PubMed ID: 29758956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller.
    von Twickel A; Büschges A; Pasemann F
    Biol Cybern; 2011 Feb; 104(1-2):95-119. PubMed ID: 21327828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for insect locomotion in the horizontal plane: feedforward activation of fast muscles, stability, and robustness.
    Kukillaya RP; Holmes P
    J Theor Biol; 2009 Nov; 261(2):210-26. PubMed ID: 19660474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of stretch reflexes to locomotor control: a modeling study.
    Yakovenko S; Gritsenko V; Prochazka A
    Biol Cybern; 2004 Feb; 90(2):146-55. PubMed ID: 14999481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural oscillators triggered by loading and hip orientation can generate activation patterns at the ankle during walking in humans.
    Chong SY; Wagner H; Wulf A
    Med Biol Eng Comput; 2012 Sep; 50(9):917-23. PubMed ID: 22843430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hill muscle model errors during movement are greatest within the physiologically relevant range of motor unit firing rates.
    Perreault EJ; Heckman CJ; Sandercock TG
    J Biomech; 2003 Feb; 36(2):211-8. PubMed ID: 12547358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force from cat soleus muscle during imposed locomotor-like movements: experimental data versus Hill-type model predictions.
    Sandercock TG; Heckman CJ
    J Neurophysiol; 1997 Mar; 77(3):1538-52. PubMed ID: 9084618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of muscle energy models for simulating human walking in three dimensions.
    Miller RH
    J Biomech; 2014 Apr; 47(6):1373-81. PubMed ID: 24581797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.