These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29391498)

  • 1. COMSOL-Based Modeling and Simulation of SnO
    Yaghouti Niyat F; Shahrokh Abadi MH
    Sci Rep; 2018 Feb; 8(1):2149. PubMed ID: 29391498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Microstructure Effect on NO
    Wang Z; Han T; Fei T; Liu S; Zhang T
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41773-41783. PubMed ID: 30419750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Humidity-Insensitive NO
    Wang Y; Liu L; Sun F; Li T; Zhang T; Qin S
    Front Chem; 2021; 9():681313. PubMed ID: 34124007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anchoring ultrafine Pd nanoparticles and SnO
    Wang Z; Zhang T; Zhao C; Han T; Fei T; Liu S; Lu G
    J Colloid Interface Sci; 2018 Mar; 514():599-608. PubMed ID: 29306190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enhanced NO
    Wang Z; Jia Z; Li Q; Zhang X; Sun W; Sun J; Liu B; Ha B
    J Colloid Interface Sci; 2019 Mar; 537():228-237. PubMed ID: 30445351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A flexible and wearable NO
    Zhang F; Lin Q; Han F; Wang Z; Tian B; Zhao L; Dong T; Jiang Z
    Microsyst Nanoeng; 2022; 8():40. PubMed ID: 35498341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of low-dimension carbon-based electrodes on the performance of SnO
    Qi W; Li W; Sun Y; Guo J; Xie D; Cai L; Zhu H; Xiang L; Ren T
    Nanotechnology; 2019 Aug; 30(34):345503. PubMed ID: 31048568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature.
    Li L; He S; Liu M; Zhang C; Chen W
    Anal Chem; 2015 Feb; 87(3):1638-45. PubMed ID: 25556377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of SnO2-SnO nanocomposites with p-n heterojunctions for the low-temperature sensing of NO2 gas.
    Li L; Zhang C; Chen W
    Nanoscale; 2015 Jul; 7(28):12133-42. PubMed ID: 26123121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of gas sensing mechanism of porous metal oxide semiconductor sensor based on finite element analysis.
    Li S; Zhang M; Wang H
    Sci Rep; 2021 Aug; 11(1):17158. PubMed ID: 34433870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Highly Sensitive Room Temperature CO
    Lee ZY; Hawari HFB; Djaswadi GWB; Kamarudin K
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33498992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Room Temperature NO
    Du H; Xie G; Zhang Q
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31717730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational study of a chemical gas sensor utilizing Pd-rGO composite on SnO
    Akshya S; Juliet AV
    Sci Rep; 2021 Jan; 11(1):970. PubMed ID: 33441635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Graphene Hydrogel Decorated with SnO
    Wu J; Wu Z; Ding H; Wei Y; Huang W; Yang X; Li Z; Qiu L; Wang X
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2634-2643. PubMed ID: 31894956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films.
    Su PG; Peng SL
    Talanta; 2015 Jan; 132():398-405. PubMed ID: 25476324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive NO2 Sensor Based on Ohmic Metal-Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures.
    Tammanoon N; Wisitsoraat A; Sriprachuabwong C; Phokharatkul D; Tuantranont A; Phanichphant S; Liewhiran C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24338-52. PubMed ID: 26479951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemically modified graphene films for high-performance optical NO2 sensors.
    Xing F; Zhang S; Yang Y; Jiang W; Liu Z; Zhu S; Yuan X
    Analyst; 2016 Aug; 141(15):4725-32. PubMed ID: 27265308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature.
    Huang L; Wang Z; Zhang J; Pu J; Lin Y; Xu S; Shen L; Chen Q; Shi W
    ACS Appl Mater Interfaces; 2014 May; 6(10):7426-33. PubMed ID: 24806241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light enhanced room temperature resistive NO
    Chen Y; Zhang X; Liu Z; Zeng Z; Zhao H; Wang X; Xu J
    Mikrochim Acta; 2019 Jan; 186(1):47. PubMed ID: 30610459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical SnS
    Hao J; Zhang D; Sun Q; Zheng S; Sun J; Wang Y
    Nanoscale; 2018 Apr; 10(15):7210-7217. PubMed ID: 29623333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.