These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 29391566)
1. Oral delivery of siRNA lipid nanoparticles: Fate in the GI tract. Ball RL; Bajaj P; Whitehead KA Sci Rep; 2018 Feb; 8(1):2178. PubMed ID: 29391566 [TBL] [Abstract][Full Text] [Related]
2. Development of lipid nanoparticle formulations of siRNA for hepatocyte gene silencing following subcutaneous administration. Chen S; Tam YY; Lin PJ; Leung AK; Tam YK; Cullis PR J Control Release; 2014 Dec; 196():106-12. PubMed ID: 25285610 [TBL] [Abstract][Full Text] [Related]
3. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. Chen S; Tam YYC; Lin PJC; Sung MMH; Tam YK; Cullis PR J Control Release; 2016 Aug; 235():236-244. PubMed ID: 27238441 [TBL] [Abstract][Full Text] [Related]
4. Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Ball RL; Bajaj P; Whitehead KA Int J Nanomedicine; 2017; 12():305-315. PubMed ID: 28115848 [TBL] [Abstract][Full Text] [Related]
5. pH-labile PEGylation of siRNA-loaded lipid nanoparticle improves active targeting and gene silencing activity in hepatocytes. Hashiba K; Sato Y; Harashima H J Control Release; 2017 Sep; 262():239-246. PubMed ID: 28774839 [TBL] [Abstract][Full Text] [Related]
6. Lipidoid Nanoparticles for siRNA Delivery to the Intestinal Epithelium: In Vitro Investigations in a Caco-2 Model. Ball RL; Knapp CM; Whitehead KA PLoS One; 2015; 10(7):e0133154. PubMed ID: 26192592 [TBL] [Abstract][Full Text] [Related]
7. Mechanistic profiling of the release kinetics of siRNA from lipidoid-polymer hybrid nanoparticles in vitro and in vivo after pulmonary administration. Thanki K; van Eetvelde D; Geyer A; Fraire J; Hendrix R; Van Eygen H; Putteman E; Sami H; de Souza Carvalho-Wodarz C; Franzyk H; Nielsen HM; Braeckmans K; Lehr CM; Ogris M; Foged C J Control Release; 2019 Sep; 310():82-93. PubMed ID: 31398360 [TBL] [Abstract][Full Text] [Related]
8. Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA. Ball RL; Hajj KA; Vizelman J; Bajaj P; Whitehead KA Nano Lett; 2018 Jun; 18(6):3814-3822. PubMed ID: 29694050 [TBL] [Abstract][Full Text] [Related]
9. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. Maisel K; Ensign L; Reddy M; Cone R; Hanes J J Control Release; 2015 Jan; 197():48-57. PubMed ID: 25449804 [TBL] [Abstract][Full Text] [Related]
10. Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery. Sato Y; Note Y; Maeki M; Kaji N; Baba Y; Tokeshi M; Harashima H J Control Release; 2016 May; 229():48-57. PubMed ID: 26995758 [TBL] [Abstract][Full Text] [Related]
11. Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Basha G; Novobrantseva TI; Rosin N; Tam YY; Hafez IM; Wong MK; Sugo T; Ruda VM; Qin J; Klebanov B; Ciufolini M; Akinc A; Tam YK; Hope MJ; Cullis PR Mol Ther; 2011 Dec; 19(12):2186-200. PubMed ID: 21971424 [TBL] [Abstract][Full Text] [Related]
12. Structure, activity and uptake mechanism of siRNA-lipid nanoparticles with an asymmetric ionizable lipid. Suzuki Y; Ishihara H Int J Pharm; 2016 Aug; 510(1):350-8. PubMed ID: 27374199 [TBL] [Abstract][Full Text] [Related]
13. Quantitation of physiological and biochemical barriers to siRNA liver delivery via lipid nanoparticle platform. Xu Y; Ou M; Keough E; Roberts J; Koeplinger K; Lyman M; Fauty S; Carlini E; Stern M; Zhang R; Yeh S; Mahan E; Wang Y; Slaughter D; Gindy M; Raab C; Thompson C; Hochman J Mol Pharm; 2014 May; 11(5):1424-34. PubMed ID: 24588618 [TBL] [Abstract][Full Text] [Related]
14. Enhanced Delivery of siRNA to Retinal Ganglion Cells by Intravitreal Lipid Nanoparticles of Positive Charge. Huang X; Chau Y Mol Pharm; 2021 Jan; 18(1):377-385. PubMed ID: 33295773 [TBL] [Abstract][Full Text] [Related]
15. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines. Wilson DS; Dalmasso G; Wang L; Sitaraman SV; Merlin D; Murthy N Nat Mater; 2010 Nov; 9(11):923-8. PubMed ID: 20935658 [TBL] [Abstract][Full Text] [Related]
16. Neutralization of negative charges of siRNA results in improved safety and efficient gene silencing activity of lipid nanoparticles loaded with high levels of siRNA. Sato Y; Matsui H; Sato R; Harashima H J Control Release; 2018 Aug; 284():179-187. PubMed ID: 29936118 [TBL] [Abstract][Full Text] [Related]
17. Engineering of small interfering RNA-loaded lipidoid-poly(DL-lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: A quality by design-based approach. Thanki K; Zeng X; Justesen S; Tejlmann S; Falkenberg E; Van Driessche E; Mørck Nielsen H; Franzyk H; Foged C Eur J Pharm Biopharm; 2017 Nov; 120():22-33. PubMed ID: 28756280 [TBL] [Abstract][Full Text] [Related]
18. Lipid nanoparticles for short interfering RNA delivery. Leung AK; Tam YY; Cullis PR Adv Genet; 2014; 88():71-110. PubMed ID: 25409604 [TBL] [Abstract][Full Text] [Related]
19. Improved Stability of siRNA-Loaded Lipid Nanoparticles Prepared with a PEG-Monoacyl Fatty Acid Facilitates Ligand-Mediated siRNA Delivery. Sakurai Y; Mizumura W; Ito K; Iwasaki K; Katoh T; Goto Y; Suga H; Harashima H Mol Pharm; 2020 Apr; 17(4):1397-1404. PubMed ID: 32091909 [TBL] [Abstract][Full Text] [Related]
20. Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells. Khare P; Dave KM; Kamte YS; Manoharan MA; O'Donnell LA; Manickam DS AAPS J; 2021 Dec; 24(1):8. PubMed ID: 34873640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]