BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 29392093)

  • 1. Mechanical Forces in Cutaneous Wound Healing: Emerging Therapies to Minimize Scar Formation.
    Barnes LA; Marshall CD; Leavitt T; Hu MS; Moore AL; Gonzalez JG; Longaker MT; Gurtner GC
    Adv Wound Care (New Rochelle); 2018 Feb; 7(2):47-56. PubMed ID: 29392093
    [No Abstract]   [Full Text] [Related]  

  • 2. Skin biomechanics: a potential therapeutic intervention target to reduce scarring.
    Hosseini M; Brown J; Khosrotehrani K; Bayat A; Shafiee A
    Burns Trauma; 2022; 10():tkac036. PubMed ID: 36017082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward understanding scarless skin wound healing and pathological scarring.
    Karppinen SM; Heljasvaara R; Gullberg D; Tasanen K; Pihlajaniemi T
    F1000Res; 2019; 8():. PubMed ID: 31231509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring.
    Xue M; Jackson CJ
    Adv Wound Care (New Rochelle); 2015 Mar; 4(3):119-136. PubMed ID: 25785236
    [No Abstract]   [Full Text] [Related]  

  • 5. Regenerative healing, scar-free healing and scar formation across the species: current concepts and future perspectives.
    Ud-Din S; Volk SW; Bayat A
    Exp Dermatol; 2014 Sep; 23(9):615-9. PubMed ID: 24863070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanomodulatory biomaterials prospects in scar prevention and treatment.
    Fernandes MG; da Silva LP; Cerqueira MT; IbaƱez R; Murphy CM; Reis RL; O Brien FJ; Marques AP
    Acta Biomater; 2022 Sep; 150():22-33. PubMed ID: 35914694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanotransduction in skin wound healing and scar formation: Potential therapeutic targets for controlling hypertrophic scarring.
    Yin J; Zhang S; Yang C; Wang Y; Shi B; Zheng Q; Zeng N; Huang H
    Front Immunol; 2022; 13():1028410. PubMed ID: 36325354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of focal adhesion complexes in fibroblast mechanotransduction during scar formation.
    Rustad KC; Wong VW; Gurtner GC
    Differentiation; 2013 Oct; 86(3):87-91. PubMed ID: 23623400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention.
    Ferguson MW; O'Kane S
    Philos Trans R Soc Lond B Biol Sci; 2004 May; 359(1445):839-50. PubMed ID: 15293811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Stem Cells During Scarless Skin Wound Healing.
    Hu MS; Rennert RC; McArdle A; Chung MT; Walmsley GG; Longaker MT; Lorenz HP
    Adv Wound Care (New Rochelle); 2014 Apr; 3(4):304-314. PubMed ID: 24761362
    [No Abstract]   [Full Text] [Related]  

  • 11. Mechanotransduction in Wound Healing and Fibrosis.
    Kuehlmann B; Bonham CA; Zucal I; Prantl L; Gurtner GC
    J Clin Med; 2020 May; 9(5):. PubMed ID: 32403382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical offloading of incisional wounds is associated with transcriptional downregulation of inflammatory pathways in a large animal model.
    Januszyk M; Wong VW; Bhatt KA; Vial IN; Paterno J; Longaker MT; Gurtner GC
    Organogenesis; 2014; 10(2):186-93. PubMed ID: 24739276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemokines in Wound Healing and as Potential Therapeutic Targets for Reducing Cutaneous Scarring.
    Rees PA; Greaves NS; Baguneid M; Bayat A
    Adv Wound Care (New Rochelle); 2015 Nov; 4(11):687-703. PubMed ID: 26543682
    [No Abstract]   [Full Text] [Related]  

  • 14. Strategies to Minimize Surgical Scarring: Translation of Lessons Learned from Bedside to Bench and Back.
    Parikh UM; Mentz J; Collier I; Davis MJ; Abu-Ghname A; Colchado D; Short WD; King A; Buchanan EP; Balaji S
    Adv Wound Care (New Rochelle); 2022 Jun; 11(6):311-329. PubMed ID: 34416825
    [No Abstract]   [Full Text] [Related]  

  • 15. Integrins as Modulators of Transforming Growth Factor Beta Signaling in Dermal Fibroblasts During Skin Regeneration After Injury.
    Boo S; Dagnino L
    Adv Wound Care (New Rochelle); 2013 Jun; 2(5):238-246. PubMed ID: 24527345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial dysfunction may play a key role in keloid and hypertrophic scar pathogenesis - Keloids and hypertrophic scars may be vascular disorders.
    Ogawa R; Akaishi S
    Med Hypotheses; 2016 Nov; 96():51-60. PubMed ID: 27959277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cutaneous Scarring: Basic Science, Current Treatments, and Future Directions.
    Marshall CD; Hu MS; Leavitt T; Barnes LA; Lorenz HP; Longaker MT
    Adv Wound Care (New Rochelle); 2018 Feb; 7(2):29-45. PubMed ID: 29392092
    [No Abstract]   [Full Text] [Related]  

  • 18. Modulating Cellular Responses to Mechanical Forces to Promote Wound Regeneration.
    Mascharak S; desJardins-Park HE; Davitt MF; Guardino NJ; Gurtner GC; Wan DC; Longaker MT
    Adv Wound Care (New Rochelle); 2022 Sep; 11(9):479-495. PubMed ID: 34465219
    [No Abstract]   [Full Text] [Related]  

  • 19. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis.
    Aarabi S; Bhatt KA; Shi Y; Paterno J; Chang EI; Loh SA; Holmes JW; Longaker MT; Yee H; Gurtner GC
    FASEB J; 2007 Oct; 21(12):3250-61. PubMed ID: 17504973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Keloids and Hypertrophic Scars: Pathophysiology, Classification, and Treatment.
    Berman B; Maderal A; Raphael B
    Dermatol Surg; 2017 Jan; 43 Suppl 1():S3-S18. PubMed ID: 27347634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.