These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29392177)

  • 21. Highly Surface-Active Chaperonin Nanobarrels for Oil-in-Water Pickering Emulsions and Delivery of Lipophilic Compounds.
    Xu B; Liu C; Sun H; Wang X; Huang F
    J Agric Food Chem; 2019 Sep; 67(36):10155-10164. PubMed ID: 31433944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensory perception of textural properties of cosmetic Pickering emulsions.
    Terescenco D; Hucher N; Picard C; Savary G
    Int J Cosmet Sci; 2020 Apr; 42(2):198-207. PubMed ID: 31997376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Limonene-in-water Pickering emulsion and on-demand separation using thermo-responsive biodegradable nanoparticles.
    Manfredini N; Merigo M; Ilare J; Sponchioni M; Moscatelli D
    Nanoscale; 2021 May; 13(18):8543-8554. PubMed ID: 33908992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermoresponsive Water-in-Oil-in-Water Pickering Double Emulsions Stabilized with Biodegradable and Semicrystalline Poly(ethylene glycol)-
    Lin C; Pan P; Shan G; Du M
    Langmuir; 2022 Dec; 38(48):14918-14927. PubMed ID: 36420614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Residual lignin in cellulose nanofibrils enhances the interfacial stabilization of Pickering emulsions.
    Guo S; Li X; Kuang Y; Liao J; Liu K; Li J; Mo L; He S; Zhu W; Song J; Song T; Rojas OJ
    Carbohydr Polym; 2021 Feb; 253():117223. PubMed ID: 33278985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water Pickering emulsions.
    Li X; Li J; Gong J; Kuang Y; Mo L; Song T
    Carbohydr Polym; 2018 Mar; 183():303-310. PubMed ID: 29352889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pickering emulsions stabilized with differently charged particles.
    Benyaya M; Bolzinger MA; Chevalier Y; Ensenat S; Bordes C
    Soft Matter; 2023 Jun; 19(25):4780-4793. PubMed ID: 37318280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of cellulose and chitin nanofibers on Pickering emulsion stability-Investigation of size and surface wettability contribution.
    Liu Y; Shi Z; Zou Y; Yu J; Liu L; Fan Y
    Int J Biol Macromol; 2023 Apr; 235():123754. PubMed ID: 36812965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interfacial and colloidal characterization of oil-in-water emulsions stabilized by interface-tunable solid lipid nanoparticles.
    Lim H; Jo M; Ban C; Choi YJ
    Food Chem; 2020 Feb; 306():125619. PubMed ID: 31606630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Water-in-oil Pickering emulsions stabilized solely by a naturally occurring steroidal sapogenin: Diosgenin.
    Wan Z; Xia H; Guo S; Zeng C
    Food Res Int; 2021 Sep; 147():110573. PubMed ID: 34399546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Food-Grade Pickering Emulsions: Preparation, Stabilization and Applications.
    Chen L; Ao F; Ge X; Shen W
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32674301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic studies of Pickering emulsions stabilized by uniform-sized PLGA particles: preparation and stabilization mechanism.
    Qi F; Wu J; Sun G; Nan F; Ngai T; Ma G
    J Mater Chem B; 2014 Nov; 2(43):7605-7611. PubMed ID: 32261898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of double emulsions using hybrid polymer/silica particles: new pickering emulsifiers with adjustable surface wettability.
    Williams M; Warren NJ; Fielding LA; Armes SP; Verstraete P; Smets J
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20919-27. PubMed ID: 25380488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual Stimuli-Responsive Pickering Emulsions from Novel Magnetic Hydroxyapatite Nanoparticles and Their Characterization Using a Microfluidic Platform.
    Mendiratta S; Ali AAA; Hejazi SH; Gates I
    Langmuir; 2021 Feb; 37(4):1353-1364. PubMed ID: 33482065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. W/O high internal phase emulsion featuring by interfacial crystallization of diacylglycerol and different internal compositions.
    Liu Y; Lee WJ; Tan CP; Lai OM; Wang Y; Qiu C
    Food Chem; 2022 Mar; 372():131305. PubMed ID: 34653777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Steric stabilization of Pickering emulsions for the efficient synthesis of polymeric microcapsules.
    Salari JW; van Heck J; Klumperman B
    Langmuir; 2010 Sep; 26(18):14929-36. PubMed ID: 20726532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphologically Tunable Rectangular Platelets Self-Assembled from Diblock Molecular Brushes Containing Azopyridine Pendants.
    Yao Y; Zhang L; Zhang S; Huang X; Feng C; Lin S; Xu B
    Langmuir; 2023 Dec; 39(51):18880-18888. PubMed ID: 38084706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pickering Emulsions Electrostatically Stabilized by Cellulose Nanocrystals.
    Varanasi S; Henzel L; Mendoza L; Prathapan R; Batchelor W; Tabor R; Garnier G
    Front Chem; 2018; 6():409. PubMed ID: 30283771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of stabilization of silicone oil-water emulsions using hybrid siloxane polymers.
    Mehta SC; Somasundaran P
    Langmuir; 2008 May; 24(9):4558-63. PubMed ID: 18363412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-constructed water-in-oil Pickering emulsions as a tool for increasing bioaccessibility of betulin.
    Zeng C; Wang Y; Liu Y; Su S; Lu Y; Qin S; Shi M
    Food Chem X; 2024 Mar; 21():101056. PubMed ID: 38187946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.