These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29392252)

  • 1. Foam flow in a model porous medium: I. The effect of foam coarsening.
    Jones SA; Getrouw N; Vincent-Bonnieu S
    Soft Matter; 2018 May; 14(18):3490-3496. PubMed ID: 29392252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Investigation of Foam Coarsening Dynamics in Porous Media at High-Pressure and High-Temperature Conditions.
    Yu W; Zhou X; Kanj MY
    Langmuir; 2022 Mar; 38(9):2895-2905. PubMed ID: 35192368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coreflood Study of Effect of Surfactant Concentration on Foam Generation in Porous Media.
    Yu G; Rossen WR; Vincent-Bonnieu S
    Ind Eng Chem Res; 2019 Jan; 58(1):420-427. PubMed ID: 30774192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore-network study of the mechanisms of foam generation in porous media.
    Chen M; Yortsos YC; Rossen WR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036304. PubMed ID: 16605648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Foam on Liquid Phase Mobility in Porous Media.
    Eftekhari AA; Farajzadeh R
    Sci Rep; 2017 Mar; 7():43870. PubMed ID: 28262795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foam flow in a model porous medium: II. The effect of trapped gas.
    Jones SA; Getrouw N; Vincent-Bonnieu S
    Soft Matter; 2018 May; 14(18):3497-3503. PubMed ID: 29707727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foam formation during drainage of a surfactant solution in a microfluidic porous medium model.
    Lima N; Parsa S; Paciornik S; Carvalho MS
    Sci Rep; 2023 Dec; 13(1):21802. PubMed ID: 38071214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Etched glass micromodel for laboratory simulation of NAPL recovery mechanisms by surfactant solutions in fractured rock.
    Martel R; Portois C; Robert T; Uyeda M
    J Contam Hydrol; 2019 Dec; 227():103550. PubMed ID: 31493908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of gas type on foam film permeability and its implications for foam flow in porous media.
    Farajzadeh R; Muruganathan RM; Rossen WR; Krastev R
    Adv Colloid Interface Sci; 2011 Oct; 168(1-2):71-8. PubMed ID: 21496785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring in-situ capillary pressure of a flowing foam system in porous media.
    Vavra E; Puerto M; Bai C; Ma K; Mateen K; Biswal L; Hirasaki G
    J Colloid Interface Sci; 2022 Sep; 621():321-330. PubMed ID: 35462174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sclerosant foam structure and stability is strongly influenced by liquid air fraction.
    Cameron E; Chen T; Connor DE; Behnia M; Parsi K
    Eur J Vasc Endovasc Surg; 2013 Oct; 46(4):488-94. PubMed ID: 23993276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic investigation of the relationship between properties of bulk foam and foam in porous media.
    Adebayo AR; Badmus SO; Sakthivel S; Rezk MG; Babu RS
    Sci Rep; 2023 May; 13(1):8058. PubMed ID: 37198400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Behaviors and Mechanisms of Air-Foam Flooding at High Pressure and Reservoir Temperature via Microfluidic Experiments.
    Li D; Xin G; Ren S
    ACS Omega; 2022 Oct; 7(41):36503-36509. PubMed ID: 36278066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foams stabilised by mixtures of nanoparticles and oppositely charged surfactants: relationship between bubble shrinkage and foam coarsening.
    Maestro A; Rio E; Drenckhan W; Langevin D; Salonen A
    Soft Matter; 2014 Sep; 10(36):6975-83. PubMed ID: 24832218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Foam Microbubbles on Electrical Resistivity and Capillary Pressure of Partially Saturated Porous Media.
    R Adebayo A; Isah A; Mahmoud M; Al-Shehri D
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bubble-particle dynamics in multiphase flow of capillary foams in a porous micromodel.
    Okesanjo O; Aubry G; Behrens S; Lu H; Meredith JC
    Lab Chip; 2023 Oct; 23(20):4434-4444. PubMed ID: 37740290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of foam flow in a 3D printed porous medium in the presence of oil.
    Osei-Bonsu K; Grassia P; Shokri N
    J Colloid Interface Sci; 2017 Mar; 490():850-858. PubMed ID: 28002773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore-scale investigation of biomass plug development and propagation in porous media.
    Stewart TL; Scott Fogler H
    Biotechnol Bioeng; 2002 Mar; 77(5):577-88. PubMed ID: 11788955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of foam flow in a rock fracture: Effects of aperture variation on apparent shear viscosity and bubble morphology.
    Shojaei MJ; Rodríguez de Castro A; Méheust Y; Shokri N
    J Colloid Interface Sci; 2019 Sep; 552():464-475. PubMed ID: 31151023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore-level mechanics of foam generation and coalescence in the presence of oil.
    Almajid MM; Kovscek AR
    Adv Colloid Interface Sci; 2016 Jul; 233():65-82. PubMed ID: 26548502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.