These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29392252)

  • 21. Evaluation of the use of capillary numbers for quantifying the removal of DNAPL trapped in a porous medium by surfactant and surfactant foam floods.
    Jeong SW
    J Colloid Interface Sci; 2005 Feb; 282(1):182-7. PubMed ID: 15576097
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Foam Generation Through a Single Pore with Rectangular Cross-Section: Hysteretic Behavior and Geometric Limitation of the Volume Fraction of Bubbles.
    Clerget M; Klimenko A; Bourrel M; Lequeux F; Panizza P
    ACS Omega; 2024 Feb; 9(7):8320-8332. PubMed ID: 38405538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical chemistry in foam drainage and coarsening.
    Saint-Jalmes A
    Soft Matter; 2006 Sep; 2(10):836-849. PubMed ID: 32680275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D simulations of wet foam coarsening evidence a self similar growth regime.
    Thomas GL; Belmonte JM; Graner F; Glazier JA; de Almeida RM
    Colloids Surf A Physicochem Eng Asp; 2015 May; 473():109-114. PubMed ID: 27630449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Gas Type on Foam Transport in Porous Media.
    Zeng Y; Farajzadeh R; Eftekhari AA; Vincent-Bonnieu S; Muthuswamy A; Rossen WR; Hirasaki GJ; Biswal SL
    Langmuir; 2016 Jun; 32(25):6239-45. PubMed ID: 27244300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media.
    Yun W; Ross CM; Roman S; Kovscek AR
    Lab Chip; 2017 Apr; 17(8):1462-1474. PubMed ID: 28294224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Destabilization, Propagation, and Generation of Surfactant-Stabilized Foam during Crude Oil Displacement in Heterogeneous Model Porous Media.
    Xiao S; Zeng Y; Vavra ED; He P; Puerto M; Hirasaki GJ; Biswal SL
    Langmuir; 2018 Jan; 34(3):739-749. PubMed ID: 29045144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sound velocity and absorption in a coarsening foam.
    Mujica N; Fauve S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021404. PubMed ID: 12241175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measuring and modeling nanoparticle transport by foam in porous media.
    Li Q; Prigiobbe V
    J Contam Hydrol; 2021 Dec; 243():103881. PubMed ID: 34479118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A 2.5-D glass micromodel for investigation of multi-phase flow in porous media.
    Xu K; Liang T; Zhu P; Qi P; Lu J; Huh C; Balhoff M
    Lab Chip; 2017 Feb; 17(4):640-646. PubMed ID: 28157240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Foam coarsening under a steady shear: interplay between bubble rearrangement and film thinning dynamics.
    Saint-Jalmes A; Trégouët C
    Soft Matter; 2023 Mar; 19(11):2090-2098. PubMed ID: 36853265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coarsening and mechanics in the bubble model for wet foams.
    Khakalo K; Baumgarten K; Tighe BP; Puisto A
    Phys Rev E; 2018 Jul; 98(1-1):012607. PubMed ID: 30110853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of nanoparticle aggregation on surfactant foam stability.
    AlYousef ZA; Almobarky MA; Schechter DS
    J Colloid Interface Sci; 2018 Feb; 511():365-373. PubMed ID: 29031155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Critical Condensate Saturation in Porous Media.
    Wang X; Mohanty KK
    J Colloid Interface Sci; 1999 Jun; 214(2):416-426. PubMed ID: 10339383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bubble motion measurements during foam drainage and coarsening.
    Maurdev G; Saint-Jalmes A; Langevin D
    J Colloid Interface Sci; 2006 Aug; 300(2):735-43. PubMed ID: 16677666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visualizing oil displacement with foam in a microfluidic device with permeability contrast.
    Conn CA; Ma K; Hirasaki GJ; Biswal SL
    Lab Chip; 2014 Oct; 14(20):3968-77. PubMed ID: 25112724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the influence of surfactant on the coarsening of aqueous foams.
    Briceño-Ahumada Z; Langevin D
    Adv Colloid Interface Sci; 2017 Jun; 244():124-131. PubMed ID: 26687804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of coarsening foams: accelerated and self-limiting drainage.
    Hilgenfeldt S; Koehler SA; Stone HA
    Phys Rev Lett; 2001 May; 86(20):4704-7. PubMed ID: 11384319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finding robust descriptive features for the characterization of the coarsening dynamics of three dimensional whey protein foams.
    Dittmann J; Eggert A; Lambertus M; Dombrowski J; Rack A; Zabler S
    J Colloid Interface Sci; 2016 Apr; 467():148-157. PubMed ID: 26802273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.