BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 29392327)

  • 1. Increased Substrate Stiffness Elicits a Myofibroblastic Phenotype in Human Lamina Cribrosa Cells.
    Liu B; Kilpatrick JI; Lukasz B; Jarvis SP; McDonnell F; Wallace DM; Clark AF; O'Brien CJ
    Invest Ophthalmol Vis Sci; 2018 Feb; 59(2):803-814. PubMed ID: 29392327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of cyclical mechanical strain on extracellular matrix gene expression in human lamina cribrosa cells in vitro.
    Kirwan RP; Fenerty CH; Crean J; Wordinger RJ; Clark AF; O'Brien CJ
    Mol Vis; 2005 Sep; 11():798-810. PubMed ID: 16205625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of lamina cribrosa cells in optic nerve head fibrosis in glaucoma.
    Wallace DM; O'Brien CJ
    Exp Eye Res; 2016 Jan; 142():102-9. PubMed ID: 26675406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential global and extra-cellular matrix focused gene expression patterns between normal and glaucomatous human lamina cribrosa cells.
    Kirwan RP; Wordinger RJ; Clark AF; O'Brien CJ
    Mol Vis; 2009; 15():76-88. PubMed ID: 19145252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of lamina cribrosa tissue stiffness and fibrosis as fundamental biomechanical drivers of pathological glaucoma cupping.
    Hopkins AA; Murphy R; Irnaten M; Wallace DM; Quill B; O'Brien C
    Am J Physiol Cell Physiol; 2020 Oct; 319(4):C611-C623. PubMed ID: 32667866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient receptor potential channels TRPC1/TRPC6 regulate lamina cribrosa cell extracellular matrix gene transcription and proliferation.
    Irnaten M; O'Malley G; Clark AF; O'Brien CJ
    Exp Eye Res; 2020 Apr; 193():107980. PubMed ID: 32088241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix Mechanotransduction via Yes-Associated Protein in Human Lamina Cribrosa Cells in Glaucoma.
    Murphy R; Irnaten M; Hopkins A; O'Callaghan J; Stamer WD; Clark AF; Wallace D; O'Brien CJ
    Invest Ophthalmol Vis Sci; 2022 Jan; 63(1):16. PubMed ID: 35015027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and localization of lamina cribrosa cells in the human optic nerve head.
    Tovar-Vidales T; Wordinger RJ; Clark AF
    Exp Eye Res; 2016 Jun; 147():94-97. PubMed ID: 27167365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of astrocytes in optic nerve head fibrosis in glaucoma.
    Schneider M; Fuchshofer R
    Exp Eye Res; 2016 Jan; 142():49-55. PubMed ID: 26321510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transforming growth factor-beta-regulated gene transcription and protein expression in human GFAP-negative lamina cribrosa cells.
    Kirwan RP; Leonard MO; Murphy M; Clark AF; O'Brien CJ
    Glia; 2005 Dec; 52(4):309-24. PubMed ID: 16078232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft matrices inhibit cell proliferation and inactivate the fibrotic phenotype of deep endometriotic stromal cells in vitro.
    Matsuzaki S; Canis M; Pouly JL; Darcha C
    Hum Reprod; 2016 Mar; 31(3):541-53. PubMed ID: 26762314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glaucoma: changes in extracellular matrix in the optic nerve head.
    Hernandez MR; Ye H
    Ann Med; 1993 Aug; 25(4):309-15. PubMed ID: 8217094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pathogenic role of transforming growth factor-β2 in glaucomatous damage to the optic nerve head.
    Fuchshofer R
    Exp Eye Res; 2011 Aug; 93(2):165-9. PubMed ID: 20708611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural immunocytochemical analysis of elastin in the human lamina cribrosa. Changes in elastic fibers in primary open-angle glaucoma.
    Hernandez MR
    Invest Ophthalmol Vis Sci; 1992 Sep; 33(10):2891-903. PubMed ID: 1526740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pro-fibrotic pathway activation in trabecular meshwork and lamina cribrosa is the main driving force of glaucoma.
    Zhavoronkov A; Izumchenko E; Kanherkar RR; Teka M; Cantor C; Manaye K; Sidransky D; West MD; Makarev E; Csoka AB
    Cell Cycle; 2016 Jun; 15(12):1643-52. PubMed ID: 27229292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the NFAT-Calcium Signaling Pathway in Human Lamina Cribrosa Cells in Glaucoma.
    Irnaten M; Zhdanov A; Brennan D; Crotty T; Clark A; Papkovsky D; O'Brien C
    Invest Ophthalmol Vis Sci; 2018 Feb; 59(2):831-842. PubMed ID: 29411011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-connective tissue growth factor antibody treatment reduces extracellular matrix production in trabecular meshwork and lamina cribrosa cells.
    Wallace DM; Clark AF; Lipson KE; Andrews D; Crean JK; O'Brien CJ
    Invest Ophthalmol Vis Sci; 2013 Dec; 54(13):7836-48. PubMed ID: 24204045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of graded cyclic stretching on extracellular matrix-related gene expression profiles in cultured primary human lamina cribrosa cells.
    Quill B; Docherty NG; Clark AF; O'Brien CJ
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1908-15. PubMed ID: 21169532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression profiling in glaucomatous human lamina cribrosa cells based on graph-clustering approach.
    Luo D; Liu K; Zhu B; Xu X
    Curr Eye Res; 2013 Jul; 38(7):767-73. PubMed ID: 23484957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the extracellular matrix of the human optic nerve head in primary open-angle glaucoma.
    Hernandez MR; Andrzejewska WM; Neufeld AH
    Am J Ophthalmol; 1990 Feb; 109(2):180-8. PubMed ID: 2405683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.