These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 29392581)
1. A novel patient-derived xenograft model for claudin-low triple-negative breast cancer. Matossian MD; Burks HE; Bowles AC; Elliott S; Hoang VT; Sabol RA; Pashos NC; O'Donnell B; Miller KS; Wahba BM; Bunnell BA; Moroz K; Zea AH; Jones SD; Ochoa AC; Al-Khami AA; Hossain F; Riker AI; Rhodes LV; Martin EC; Miele L; Burow ME; Collins-Burow BM Breast Cancer Res Treat; 2018 Jun; 169(2):381-390. PubMed ID: 29392581 [TBL] [Abstract][Full Text] [Related]
2. Drug resistance profiling of a new triple negative breast cancer patient-derived xenograft model. Matossian MD; Burks HE; Elliott S; Hoang VT; Bowles AC; Sabol RA; Wahba B; Anbalagan M; Rowan B; Abazeed ME; Bunnell BA; Moroz K; Miele L; Rhodes LV; Jones SD; Martin EC; Collins-Burow BM; Burow ME BMC Cancer; 2019 Mar; 19(1):205. PubMed ID: 30845999 [TBL] [Abstract][Full Text] [Related]
3. Prognostic and functional importance of the engraftment-associated genes in the patient-derived xenograft models of triple-negative breast cancers. Moon HG; Oh K; Lee J; Lee M; Kim JY; Yoo TK; Seo MW; Park AK; Ryu HS; Jung EJ; Kim N; Jeong S; Han W; Lee DS; Noh DY Breast Cancer Res Treat; 2015 Nov; 154(1):13-22. PubMed ID: 26438141 [TBL] [Abstract][Full Text] [Related]
4. In-depth characterization of a new patient-derived xenograft model for metaplastic breast carcinoma to identify viable biologic targets and patterns of matrix evolution within rare tumor types. Matossian MD; Chang T; Wright MK; Burks HE; Elliott S; Sabol RA; Wathieu H; Windsor GO; Alzoubi MS; King CT; Bursavich JB; Ham AM; Savoie JJ; Nguyen K; Baddoo M; Flemington E; Sirenko O; Cromwell EF; Hebert KL; Lau F; Izadpanah R; Brown H; Sinha S; Zabaleta J; Riker AI; Moroz K; Miele L; Zea AH; Ochoa A; Bunnell BA; Collins-Burow BM; Martin EC; Burow ME Clin Transl Oncol; 2022 Jan; 24(1):127-144. PubMed ID: 34370182 [TBL] [Abstract][Full Text] [Related]
5. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Sabol RA; Bowles AC; Côté A; Wise R; O'Donnell B; Matossian MD; Hossain FM; Burks HE; Del Valle L; Miele L; Collins-Burow BM; Burow ME; Bunnell BA Breast Cancer Res; 2019 May; 21(1):67. PubMed ID: 31118047 [TBL] [Abstract][Full Text] [Related]
6. A large collection of integrated genomically characterized patient-derived xenografts highlighting the heterogeneity of triple-negative breast cancer. Coussy F; de Koning L; Lavigne M; Bernard V; Ouine B; Boulai A; El Botty R; Dahmani A; Montaudon E; Assayag F; Morisset L; Huguet L; Sourd L; Painsec P; Callens C; Chateau-Joubert S; Servely JL; Larcher T; Reyes C; Girard E; Pierron G; Laurent C; Vacher S; Baulande S; Melaabi S; Vincent-Salomon A; Gentien D; Dieras V; Bieche I; Marangoni E Int J Cancer; 2019 Oct; 145(7):1902-1912. PubMed ID: 30859564 [TBL] [Abstract][Full Text] [Related]
7. p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Powell E; Shao J; Yuan Y; Chen HC; Cai S; Echeverria GV; Mistry N; Decker KF; Schlosberg C; Do KA; Edwards JR; Liang H; Piwnica-Worms D; Piwnica-Worms H Breast Cancer Res; 2016 Jan; 18(1):13. PubMed ID: 26818199 [TBL] [Abstract][Full Text] [Related]
8. Novel cancer gene variants and gene fusions of triple-negative breast cancers (TNBCs) reveal their molecular diversity conserved in the patient-derived xenograft (PDX) model. Jung J; Jang K; Ju JM; Lee E; Lee JW; Kim HJ; Kim J; Lee SB; Ko BS; Son BH; Lee HJ; Gong G; Ahn SY; Choi JK; Singh SR; Chang S Cancer Lett; 2018 Aug; 428():127-138. PubMed ID: 29684420 [TBL] [Abstract][Full Text] [Related]
9. Targeted Pten deletion plus p53-R270H mutation in mouse mammary epithelium induces aggressive claudin-low and basal-like breast cancer. Wang S; Liu JC; Kim D; Datti A; Zacksenhaus E Breast Cancer Res; 2016 Jan; 18(1):9. PubMed ID: 26781438 [TBL] [Abstract][Full Text] [Related]
10. Modulation of Mitochondrial ERβ Expression Inhibits Triple-Negative Breast Cancer Tumor Progression by Activating Mitochondrial Function. Song IS; Jeong YJ; Jeong SH; Kim JE; Han J; Kim TH; Jang SW Cell Physiol Biochem; 2019; 52(3):468-485. PubMed ID: 30873822 [TBL] [Abstract][Full Text] [Related]
11. Panobinostat suppresses the mesenchymal phenotype in a novel claudin-low triple negative patient-derived breast cancer model. Matossian MD; Burks HE; Elliott S; Hoang VT; Bowles AC; Sabol RA; Bunnell BA; Martin EC; Burow ME; Collins-Burow BM Oncoscience; 2018 Mar; 5(3-4):99-108. PubMed ID: 29854878 [TBL] [Abstract][Full Text] [Related]
12. Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy. Kren BT; Unger GM; Abedin MJ; Vogel RI; Henzler CM; Ahmed K; Trembley JH Breast Cancer Res; 2015; 17():19. PubMed ID: 25837326 [TBL] [Abstract][Full Text] [Related]
13. Upregulation of MGP by HOXC8 promotes the proliferation, migration, and EMT processes of triple-negative breast cancer. Gong C; Zou J; Zhang M; Zhang J; Xu S; Zhu S; Yang M; Li D; Wang Y; Shi J; Li Y Mol Carcinog; 2019 Oct; 58(10):1863-1875. PubMed ID: 31264274 [TBL] [Abstract][Full Text] [Related]
14. Functional characterization of androgen receptor in two patient-derived xenograft models of triple negative breast cancer. Wang X; Petrossian K; Huang MJ; Saeki K; Kanaya N; Chang G; Somlo G; Chen S J Steroid Biochem Mol Biol; 2021 Feb; 206():105791. PubMed ID: 33271252 [TBL] [Abstract][Full Text] [Related]
15. microRNA-761 induces aggressive phenotypes in triple-negative breast cancer cells by repressing TRIM29 expression. Guo GC; Wang JX; Han ML; Zhang LP; Li L Cell Oncol (Dordr); 2017 Apr; 40(2):157-166. PubMed ID: 28054302 [TBL] [Abstract][Full Text] [Related]
16. Protein arginine methyltransferase 5: A novel therapeutic target for triple-negative breast cancers. Vinet M; Suresh S; Maire V; Monchecourt C; Némati F; Lesage L; Pierre F; Ye M; Lescure A; Brisson A; Meseure D; Nicolas A; Rigaill G; Marangoni E; Del Nery E; Roman-Roman S; Dubois T Cancer Med; 2019 May; 8(5):2414-2428. PubMed ID: 30957988 [TBL] [Abstract][Full Text] [Related]
17. Higher levels of TIMP-1 expression are associated with a poor prognosis in triple-negative breast cancer. Cheng G; Fan X; Hao M; Wang J; Zhou X; Sun X Mol Cancer; 2016 Apr; 15(1):30. PubMed ID: 27130446 [TBL] [Abstract][Full Text] [Related]
18. Thymoquinone inhibits cell proliferation, migration, and invasion by regulating the elongation factor 2 kinase (eEF-2K) signaling axis in triple-negative breast cancer. Kabil N; Bayraktar R; Kahraman N; Mokhlis HA; Calin GA; Lopez-Berestein G; Ozpolat B Breast Cancer Res Treat; 2018 Oct; 171(3):593-605. PubMed ID: 29971628 [TBL] [Abstract][Full Text] [Related]
19. miR-17-5p suppresses cell proliferation and invasion by targeting ETV1 in triple-negative breast cancer. Li J; Lai Y; Ma J; Liu Y; Bi J; Zhang L; Chen L; Yao C; Lv W; Chang G; Wang S; Ouyang M; Wang W BMC Cancer; 2017 Nov; 17(1):745. PubMed ID: 29126392 [TBL] [Abstract][Full Text] [Related]
20. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Hatem R; El Botty R; Chateau-Joubert S; Servely JL; Labiod D; de Plater L; Assayag F; Coussy F; Callens C; Vacher S; Reyal F; Cosulich S; Diéras V; Bièche I; Marangoni E Oncotarget; 2016 Jul; 7(30):48206-48219. PubMed ID: 27374081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]