These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 29392940)
1. In Situ Quantification of Surface Intermediates and Correlation to Discharge Products on Hematite Photoanodes Using a Combined Scanning Electrochemical Microscopy Approach. Krumov MR; Simpson BH; Counihan MJ; Rodríguez-López J Anal Chem; 2018 Mar; 90(5):3050-3057. PubMed ID: 29392940 [TBL] [Abstract][Full Text] [Related]
2. Quantification of photoelectrogenerated hydroxyl radical on TiO2 by surface interrogation scanning electrochemical microscopy. Zigah D; Rodríguez-López J; Bard AJ Phys Chem Chem Phys; 2012 Oct; 14(37):12764-72. PubMed ID: 22903377 [TBL] [Abstract][Full Text] [Related]
3. High-Throughput Screening and Surface Interrogation Studies of Au-Modified Hematite Photoanodes by Scanning Electrochemical Microscopy for Solar Water Splitting. Ma Y; Shinde PS; Li X; Pan S ACS Omega; 2019 Oct; 4(17):17257-17268. PubMed ID: 31656900 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical Imaging and Redox Interrogation of Surface Defects on Operating SrTiO3 Photoelectrodes. Simpson BH; Rodríguez-López J J Am Chem Soc; 2015 Dec; 137(47):14865-8. PubMed ID: 26565127 [TBL] [Abstract][Full Text] [Related]
5. Surface Interrogation Scanning Electrochemical Microscopy for a Photoelectrochemical Reaction: Water Oxidation on a Hematite Surface. Kim JY; Ahn HS; Bard AJ Anal Chem; 2018 Mar; 90(5):3045-3049. PubMed ID: 29392942 [TBL] [Abstract][Full Text] [Related]
6. Photoelectrochemical Water Splitting System--A Study of Interfacial Charge Transfer with Scanning Electrochemical Microscopy. Zhang B; Zhang X; Xiao X; Shen Y ACS Appl Mater Interfaces; 2016 Jan; 8(3):1606-14. PubMed ID: 26720831 [TBL] [Abstract][Full Text] [Related]
7. Switching Transient Generation in Surface Interrogation Scanning Electrochemical Microscopy and Time-of-Flight Techniques. Ahn HS; Bard AJ Anal Chem; 2015 Dec; 87(24):12276-80. PubMed ID: 26559047 [TBL] [Abstract][Full Text] [Related]
8. Impact of electrolyte composition on the reactivity of a redox active polymer studied through surface interrogation and ion-sensitive scanning electrochemical microscopy. Burgess M; Hernández-Burgos K; Cheng KJ; Moore JS; Rodríguez-López J Analyst; 2016 Jun; 141(12):3842-50. PubMed ID: 27064026 [TBL] [Abstract][Full Text] [Related]
9. A Study of the Mechanism of the Hydrogen Evolution Reaction on Nickel by Surface Interrogation Scanning Electrochemical Microscopy. Liang Z; Ahn HS; Bard AJ J Am Chem Soc; 2017 Apr; 139(13):4854-4858. PubMed ID: 28276238 [TBL] [Abstract][Full Text] [Related]
10. Surface interrogation of CoP(i) water oxidation catalyst by scanning electrochemical microscopy. Ahn HS; Bard AJ J Am Chem Soc; 2015 Jan; 137(2):612-5. PubMed ID: 25562373 [TBL] [Abstract][Full Text] [Related]
11. Quantification of the surface diffusion of tripodal binding motifs on graphene using scanning electrochemical microscopy. Rodríguez-López J; Ritzert NL; Mann JA; Tan C; Dichtel WR; Abruña HD J Am Chem Soc; 2012 Apr; 134(14):6224-36. PubMed ID: 22409580 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of local oxygen flux produced by photoelectrochemical hydroxide oxidation by scanning electrochemical microscopy. Gupta B; Aziz A; Sundriyal S; Shrivastav V; Melvin AA; Holdynski M; Nogala W Sci Rep; 2023 Mar; 13(1):5019. PubMed ID: 36977815 [TBL] [Abstract][Full Text] [Related]
13. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting. Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924 [TBL] [Abstract][Full Text] [Related]
14. Back electron-hole recombination in hematite photoanodes for water splitting. Le Formal F; Pendlebury SR; Cornuz M; Tilley SD; Grätzel M; Durrant JR J Am Chem Soc; 2014 Feb; 136(6):2564-74. PubMed ID: 24437340 [TBL] [Abstract][Full Text] [Related]
15. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. Sivula K; Le Formal F; Grätzel M ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621 [TBL] [Abstract][Full Text] [Related]
16. Characterization of peroxo reaction intermediates in the water oxidation process on hematite surfaces. Poaty LT; Ulman K; Seriani N; M'Passi-Mabiala B; Gebauer R J Mol Model; 2018 Sep; 24(10):284. PubMed ID: 30229320 [TBL] [Abstract][Full Text] [Related]
17. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Wang G; Ling Y; Lu X; Zhai T; Qian F; Tong Y; Li Y Nanoscale; 2013 May; 5(10):4129-33. PubMed ID: 23563928 [TBL] [Abstract][Full Text] [Related]
18. Reaction of Br2 with adsorbed CO on Pt, studied by the surface interrogation mode of scanning electrochemical microscopy. Wang Q; Rodríguez-López J; Bard AJ J Am Chem Soc; 2009 Dec; 131(47):17046-7. PubMed ID: 19904945 [TBL] [Abstract][Full Text] [Related]
19. In situ XAS study of CoB Xi L; Schwanke C; Zhou D; Drevon D; van de Krol R; Lange KM Dalton Trans; 2017 Nov; 46(45):15719-15726. PubMed ID: 29095446 [TBL] [Abstract][Full Text] [Related]
20. Interrogation of surfaces for the quantification of adsorbed species on electrodes: oxygen on gold and platinum in neutral media. Rodríguez-López J; Alpuche-Avilés MA; Bard AJ J Am Chem Soc; 2008 Dec; 130(50):16985-95. PubMed ID: 19053403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]