These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29393315)

  • 1. Molecular dynamics simulation of a nanofluidic energy absorption system: effects of the chiral vector of carbon nanotubes.
    Ganjiani SH; Hossein Nezhad A
    Phys Chem Chem Phys; 2018 Feb; 20(7):5140-5148. PubMed ID: 29393315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water flow in carbon nanotubes: the role of tube chirality.
    Sam A; K VP; Sathian SP
    Phys Chem Chem Phys; 2019 Mar; 21(12):6566-6573. PubMed ID: 30849155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How a zigzag carbon nanotube grows.
    Yuan Q; Ding F
    Angew Chem Int Ed Engl; 2015 May; 54(20):5924-8. PubMed ID: 25766145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of thermal evolution of copper nanoclusters encapsulated in carbon nanotubes: a molecular dynamics study.
    Akbarzadeh H; Abbaspour M; Salemi S; Abroodi M
    Phys Chem Chem Phys; 2015 May; 17(19):12747-59. PubMed ID: 25903839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H2 adsorption on Ag-nanocluster/single-walled carbon nanotube composites: a molecular dynamics study on the effects of nanocluster size, diameter, and chirality of nanotube.
    Akbarzadeh H; Shamkhali AN
    J Comput Chem; 2015 Mar; 36(7):433-40. PubMed ID: 25583625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide encapsulation regulated by the geometry of carbon nanotubes.
    Zhang ZS; Kang Y; Liang LJ; Liu YC; Wu T; Wang Q
    Biomaterials; 2014 Feb; 35(5):1771-8. PubMed ID: 24290699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the chirality-dependent adsorption behavior of volatile organic compounds on carbon nanotubes.
    Li B; Mi C
    Phys Chem Chem Phys; 2021 Oct; 23(38):21941-21950. PubMed ID: 34569566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Communication: Origin of the difference between carbon nanotube armchair and zigzag ends.
    Li Y; Ahuja R; Larsson JA
    J Chem Phys; 2014 Mar; 140(9):091102. PubMed ID: 24606345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical and thermal properties of graphyne-coated carbon nanotubes: a molecular dynamics simulation on one-dimensional all-carbon van der Waals heterostructures.
    Li J; Ying P; Liang T; Du Y; Zhou J; Zhang J
    Phys Chem Chem Phys; 2023 Mar; 25(12):8651-8663. PubMed ID: 36891945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics and density profile of water in nanotubes as one-dimensional fluid.
    Liu Y; Wang Q; Zhang L; Wu T
    Langmuir; 2005 Dec; 21(25):12025-30. PubMed ID: 16316148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of trihalomethanes from aqueous solution through armchair carbon nanotubes: a molecular dynamics study.
    Azamat J; Khataee A; Joo SW; Yin B
    J Mol Graph Model; 2015 Apr; 57():70-5. PubMed ID: 25682360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotubes and nanobelts as potential materials for biosensor.
    Monavari SM; Marsusi F; Memarian N; Qasemnazhand M
    Sci Rep; 2023 Feb; 13(1):3118. PubMed ID: 36813813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A First-Principle Theoretical Study of Mechanical and Electronic Properties in Graphene Single-Walled Carbon Nanotube Junctions.
    Yang N; Yang D; Chen L; Liu D; Cai M; Fan X
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29137203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersing carbon nanotubes by chiral network surfactants.
    Lin P; Cong Y; Zhang B
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6724-32. PubMed ID: 25789867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphenylene Nanotubes.
    Koch AT; Khoshaman AH; Fan HD; Sawatzky GA; Nojeh A
    J Phys Chem Lett; 2015 Oct; 6(19):3982-7. PubMed ID: 26722903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational energy transfer between carbon nanotubes and liquid water: a molecular dynamics study.
    Nelson TR; Chaban VV; Kalugin ON; Prezhdo OV
    J Phys Chem B; 2010 Apr; 114(13):4609-14. PubMed ID: 20230009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition.
    Barnard JS; Paukner C; Koziol KK
    Nanoscale; 2016 Oct; 8(39):17262-17270. PubMed ID: 27714047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing descriptors to predict mechanical properties of nanotubes.
    Borders TL; Fonseca AF; Zhang H; Cho K; Rusinko A
    J Chem Inf Model; 2013 Apr; 53(4):773-82. PubMed ID: 23452005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes.
    Omachi H; Segawa Y; Itami K
    Acc Chem Res; 2012 Aug; 45(8):1378-89. PubMed ID: 22587963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming graphene nanoribbons into nanotubes by use of point defects.
    Sgouros A; Sigalas MM; Papagelis K; Kalosakas G
    J Phys Condens Matter; 2014 Mar; 26(12):125301. PubMed ID: 24594675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.