BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 29393357)

  • 1. Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review).
    Guo JD; Zhao X; Li Y; Li GR; Liu XL
    Int J Mol Med; 2018 Apr; 41(4):1817-1825. PubMed ID: 29393357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria-mediated damage to dopaminergic neurons in Parkinson's disease (Review).
    Liu XL; Wang YD; Yu XM; Li DW; Li GR
    Int J Mol Med; 2018 Feb; 41(2):615-623. PubMed ID: 29207041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IDH2 deficiency promotes mitochondrial dysfunction and dopaminergic neurotoxicity: implications for Parkinson's disease.
    Kim H; Kim SH; Cha H; Kim SR; Lee JH; Park JW
    Free Radic Res; 2016 Aug; 50(8):853-60. PubMed ID: 27142242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current perspective of mitochondrial biology in Parkinson's disease.
    Ammal Kaidery N; Thomas B
    Neurochem Int; 2018 Jul; 117():91-113. PubMed ID: 29550604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced translocation of TRIM32 to mitochondria sensitizes dopaminergic neuronal cells to apoptosis during stress conditions in Parkinson's disease.
    Goyani S; Shinde A; Shukla S; Saranga MV; Currim F; Mane M; Singh J; Roy M; Gohel D; Chandak N; Vasiyani H; Singh R
    FEBS J; 2024 Jun; 291(12):2636-2655. PubMed ID: 38317520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative Modification and Its Implications for the Neurodegeneration of Parkinson's Disease.
    Zhao J; Yu S; Zheng Y; Yang H; Zhang J
    Mol Neurobiol; 2017 Mar; 54(2):1404-1418. PubMed ID: 26843115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of dopaminergic neuron loss in Parkinson's disease.
    Surmeier DJ
    FEBS J; 2018 Oct; 285(19):3657-3668. PubMed ID: 30028088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADPH oxidase 1-mediated oxidative stress leads to dopamine neuron death in Parkinson's disease.
    Choi DH; Cristóvão AC; Guhathakurta S; Lee J; Joh TH; Beal MF; Kim YS
    Antioxid Redox Signal; 2012 May; 16(10):1033-45. PubMed ID: 22098189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of oxidative stress in Parkinson's disease.
    Dias V; Junn E; Mouradian MM
    J Parkinsons Dis; 2013; 3(4):461-91. PubMed ID: 24252804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parkin loss-of-function pathology: Premature neuronal senescence induced by high levels of reactive oxygen species?
    Buhlman LM
    Mech Ageing Dev; 2017 Jan; 161(Pt A):112-120. PubMed ID: 27374431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SUMO-regulated mitochondrial function in Parkinson's disease.
    Guerra de Souza AC; Prediger RD; Cimarosti H
    J Neurochem; 2016 Jun; 137(5):673-86. PubMed ID: 26932327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Damage to dopaminergic neurons is mediated by proliferating cell nuclear antigen through the p53 pathway under conditions of oxidative stress in a cell model of Parkinson's disease.
    Li DW; Li GR; Zhang BL; Feng JJ; Zhao H
    Int J Mol Med; 2016 Feb; 37(2):429-35. PubMed ID: 26677001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dysregulation of the Mitochondrial Unfolded Protein Response Induces Non-Apoptotic Dopaminergic Neurodegeneration in
    Martinez BA; Petersen DA; Gaeta AL; Stanley SP; Caldwell GA; Caldwell KA
    J Neurosci; 2017 Nov; 37(46):11085-11100. PubMed ID: 29030433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA Damage and Parkinson's Disease.
    Pfeifer GP
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are dopamine derivatives implicated in the pathogenesis of Parkinson's disease?
    Bisaglia M; Filograna R; Beltramini M; Bubacco L
    Ageing Res Rev; 2014 Jan; 13():107-14. PubMed ID: 24389159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease.
    Gordon R; Singh N; Lawana V; Ghosh A; Harischandra DS; Jin H; Hogan C; Sarkar S; Rokad D; Panicker N; Anantharam V; Kanthasamy AG; Kanthasamy A
    Neurobiol Dis; 2016 Sep; 93():96-114. PubMed ID: 27151770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms.
    Perier C; Bender A; García-Arumí E; Melià MJ; Bové J; Laub C; Klopstock T; Elstner M; Mounsey RB; Teismann P; Prolla T; Andreu AL; Vila M
    Brain; 2013 Aug; 136(Pt 8):2369-78. PubMed ID: 23884809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lutein protects dopaminergic neurons against MPTP-induced apoptotic death and motor dysfunction by ameliorating mitochondrial disruption and oxidative stress.
    Nataraj J; Manivasagam T; Thenmozhi AJ; Essa MM
    Nutr Neurosci; 2016 Jul; 19(6):237-46. PubMed ID: 25730317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation within mitochondrial oxidative phosphorylation supercomplexes and membrane viscosity during degeneration of dopaminergic neurons in an animal model of early Parkinson's disease.
    Kuter K; Kratochwil M; Berghauzen-Maciejewska K; Głowacka U; Sugawa MD; Ossowska K; Dencher NA
    Biochim Biophys Acta; 2016 Apr; 1862(4):741-753. PubMed ID: 26844379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model.
    Sanders LH; Timothy Greenamyre J
    Free Radic Biol Med; 2013 Sep; 62():111-120. PubMed ID: 23328732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.