These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29393415)

  • 1. Identification of risk factors for sepsis-associated mortality by gene expression profiling analysis.
    Qi Y; Chen X; Wu N; Ma C; Cui X; Liu Z
    Mol Med Rep; 2018 Apr; 17(4):5350-5355. PubMed ID: 29393415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of key pathogenic genes of sepsis based on the Gene Expression Omnibus database.
    Lu X; Xue L; Sun W; Ye J; Zhu Z; Mei H
    Mol Med Rep; 2018 Feb; 17(2):3042-3054. PubMed ID: 29257295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinformatics Analysis of Gene Expression Profiles for Risk Prediction in Patients with Septic Shock.
    Hu Y; Cheng L; Zhong W; Chen M; Zhang Q
    Med Sci Monit; 2019 Dec; 25():9563-9571. PubMed ID: 31838482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma.
    Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K
    Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinformatics-Based Study to Investigate Potential Differentially Expressed Genes and miRNAs in Pediatric Sepsis.
    Xie K; Kong S; Li F; Zhang Y; Wang J; Zhao W
    Med Sci Monit; 2020 Jun; 26():e923881. PubMed ID: 32575108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network analysis of inflammatory responses to sepsis by neutrophils and peripheral blood mononuclear cells.
    Godini R; Fallahi H; Ebrahimie E
    PLoS One; 2018; 13(8):e0201674. PubMed ID: 30086151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics analysis of fibroblasts exposed to TGF‑β at the early proliferation phase of wound repair.
    Mi B; Liu G; Zhou W; Lv H; Zha K; Liu Y; Wu Q; Liu J
    Mol Med Rep; 2017 Dec; 16(6):8146-8154. PubMed ID: 28983581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miR‑148 family members are putative biomarkers for sepsis.
    Dong L; Li H; Zhang S; Yang G
    Mol Med Rep; 2019 Jun; 19(6):5133-5141. PubMed ID: 31059023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Potential Biomarkers Associated with Prognosis in Gastric Cancer via Bioinformatics Analysis.
    Li D; Yin Y; He M; Wang J
    Med Sci Monit; 2021 Feb; 27():e929104. PubMed ID: 33582701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of significant genes as prognostic markers and potential tumor suppressors in lung adenocarcinoma via bioinformatical analysis.
    Lu M; Fan X; Liao W; Li Y; Ma L; Yuan M; Gu R; Wei Z; Wang C; Zhang H
    BMC Cancer; 2021 May; 21(1):616. PubMed ID: 34039311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Transcriptome Profiling of Peripheral Blood Mononuclear Cells from Patients with Sepsis.
    Wu T; Liang X; Jiang Y; Chen Q; Zhang H; Zhang S; Zhang C; Lv Y; Xin J; Jiang J; Shi D; Chen X; Li J; Xu Y
    Int J Med Sci; 2020; 17(14):2077-2086. PubMed ID: 32922168
    [No Abstract]   [Full Text] [Related]  

  • 13. Identification of Biomarkers Associated with Septic Cardiomyopathy Based on Bioinformatics Analyses.
    Chen M; Kong C; Zheng Z; Li Y
    J Comput Biol; 2020 Jan; 27(1):69-80. PubMed ID: 31424269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell transcriptional gene signature analysis identifies IL-17 signaling pathway as the key pathway in sepsis.
    Zhao H; Li Y; Sun G; Cheng M; Ding X; Wang K
    Immunobiology; 2023 Nov; 228(6):152763. PubMed ID: 38039751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentially Expressed Gene Screening, Biological Function Enrichment, and Correlation with Prognosis in Non-Small Cell Lung Cancer.
    Huang H; Huang Q; Tang T; Zhou X; Gu L; Lu X; Liu F
    Med Sci Monit; 2019 Jun; 25():4333-4341. PubMed ID: 31181055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinformatics analysis of gene expression profile data to screen key genes involved in intracranial aneurysms.
    Guo T; Hou D; Yu D
    Mol Med Rep; 2019 Nov; 20(5):4415-4424. PubMed ID: 31545495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the biomarkers and potential therapeutic drugs for sepsis via integrated bioinformatic analysis.
    Liang P; Wu Y; Qu S; Younis M; Wang W; Wu Z; Huang X
    BMC Infect Dis; 2024 Jan; 24(1):32. PubMed ID: 38166628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of genes related to consecutive trauma-induced sepsis via gene expression profiling analysis.
    Dong L; Li H; Zhang S; Su L
    Medicine (Baltimore); 2018 Apr; 97(15):e0362. PubMed ID: 29642183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive Analysis of Gene Expression Profiles of Sepsis-Induced Multiorgan Failure Identified Its Valuable Biomarkers.
    Wang Y; Yin X; Yang F
    DNA Cell Biol; 2018 Feb; 37(2):90-98. PubMed ID: 29251990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. POLE2 Serves as a Prognostic Biomarker and Is Associated with Immune Infiltration in Squamous Cell Lung Cancer.
    Wu Z; Wang YM; Dai Y; Chen LA
    Med Sci Monit; 2020 Apr; 26():e921430. PubMed ID: 32304567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.