These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29393555)

  • 1. Single-Molecule Kinetics of an Enzyme in the Presence of Multiple Substrates.
    Singh D; Chaudhury S
    Chembiochem; 2018 Apr; 19(8):842-850. PubMed ID: 29393555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule enzyme kinetics in the presence of inhibitors.
    Saha S; Sinha A; Dua A
    J Chem Phys; 2012 Jul; 137(4):045102. PubMed ID: 22852658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical properties of fluctuating enzymes with dynamic cooperativity using a first passage time distribution formalism.
    Singh D; Chaudhury S
    J Chem Phys; 2017 Apr; 146(14):145103. PubMed ID: 28411619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a simplified generic bi-substrate rate equation for computational systems biology.
    Rohwer JM; Hanekom AJ; Crous C; Snoep JL; Hofmeyr JH
    Syst Biol (Stevenage); 2006 Sep; 153(5):338-41. PubMed ID: 16986312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isoleucyl-tRNA synthetase from Baker's yeast. Catalytic mechanism, 2',3'-specificity and fidelity in aminoacylation of tRNAIle with isoleucine and valine investigated with initial-rate kinetics using analogs of tRNA, ATP and amino acids.
    Freist W; Cramer F
    Eur J Biochem; 1983 Mar; 131(1):65-80. PubMed ID: 6339236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel versus Off-Pathway Michaelis-Menten Mechanism for Single-Enzyme Kinetics of a Fluctuating Enzyme.
    Kumar A; Maity H; Dua A
    J Phys Chem B; 2015 Jul; 119(27):8490-500. PubMed ID: 26079147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600. Different pathways of the aminoacylation reaction depending on presence of pyrophosphatase, order of substrate addition in the pyrophosphate exchange, and substrate specificity with regard to ATP analogs.
    Freist W; Sternbach H; Cramer F
    Eur J Biochem; 1982 Nov; 128(2-3):315-29. PubMed ID: 6129973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Master equation approach to single oligomeric enzyme catalysis: mechanically controlled further catalysis.
    Das B; Gangopadhyay G
    J Chem Phys; 2010 Apr; 132(13):135102. PubMed ID: 20387959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of half-reaction equilibrium in a ping-pong enzyme mechanism.
    Smith GD; Harrison R; Eisenthal R
    Neurochem Res; 1996 Sep; 21(9):1061-4. PubMed ID: 8897469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of steady-state rate equations and the fluxes between substrates and products in enzyme reactions.
    Britton HG
    Biochem J; 1977 Mar; 161(3):517-26. PubMed ID: 851429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and crystallographic analyses support a sequential-ordered bi bi catalytic mechanism for Escherichia coli glucose-1-phosphate thymidylyltransferase.
    Zuccotti S; Zanardi D; Rosano C; Sturla L; Tonetti M; Bolognesi M
    J Mol Biol; 2001 Nov; 313(4):831-43. PubMed ID: 11697907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generic Schemes for Single-Molecule Kinetics. 2: Information Content of the Poisson Indicator.
    Avila TR; Piephoff DE; Cao J
    J Phys Chem B; 2017 Aug; 121(33):7750-7760. PubMed ID: 28613879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simplified approach for developing the rate expressions for enzyme-catalyzed reactions.
    Thilakavathi M; Basak T; Panda T
    Biotechnol Lett; 2006 Dec; 28(23):1889-94. PubMed ID: 17072530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative interpretation of the randomness in single enzyme turnover times.
    Yang S; Cao J; Silbey RJ; Sung J
    Biophys J; 2011 Aug; 101(3):519-24. PubMed ID: 21806919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary optimization of the catalytic effectiveness of an enzyme.
    Burbaum JJ; Raines RT; Albery WJ; Knowles JR
    Biochemistry; 1989 Nov; 28(24):9293-305. PubMed ID: 2611230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A shifting specificity model for enzyme catalysis.
    Britt BM
    J Theor Biol; 1993 Sep; 164(2):181-90. PubMed ID: 8246515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule Michaelis-Menten equations.
    Kou SC; Cherayil BJ; Min W; English BP; Xie XS
    J Phys Chem B; 2005 Oct; 109(41):19068-81. PubMed ID: 16853459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic disorder in single-molecule Michaelis-Menten kinetics: the reaction-diffusion formalism in the Wilemski-Fixman approximation.
    Chaudhury S; Cherayil BJ
    J Chem Phys; 2007 Sep; 127(10):105103. PubMed ID: 17867782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of rabbit muscle phosphofructokinase at pH8.
    Merry S; Britton HG
    Biochem J; 1985 Feb; 226(1):13-28. PubMed ID: 3156586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.