BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 29393587)

  • 1. Impact of CHO Metabolism on Cell Growth and Protein Production: An Overview of Toxic and Inhibiting Metabolites and Nutrients.
    Pereira S; Kildegaard HF; Andersen MR
    Biotechnol J; 2018 Mar; 13(3):e1700499. PubMed ID: 29393587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic analysis of antibody producing CHO cells in fed-batch production.
    Dean J; Reddy P
    Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism.
    Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S
    Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomics profiling of extracellular metabolites in recombinant Chinese Hamster Ovary fed-batch culture.
    Chong WP; Goh LT; Reddy SG; Yusufi FN; Lee DY; Wong NS; Heng CK; Yap MG; Ho YS
    Rapid Commun Mass Spectrom; 2009 Dec; 23(23):3763-71. PubMed ID: 19902412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process.
    Calmels C; McCann A; Malphettes L; Andersen MR
    Metab Eng; 2019 Jan; 51():9-19. PubMed ID: 30227251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolomics-driven approach for the improvement of Chinese hamster ovary cell growth: overexpression of malate dehydrogenase II.
    Chong WP; Reddy SG; Yusufi FN; Lee DY; Wong NS; Heng CK; Yap MG; Ho YS
    J Biotechnol; 2010 May; 147(2):116-21. PubMed ID: 20363268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The art of CHO cell engineering: A comprehensive retrospect and future perspectives.
    Fischer S; Handrick R; Otte K
    Biotechnol Adv; 2015 Dec; 33(8):1878-96. PubMed ID: 26523782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An omics approach to rational feed: Enhancing growth in CHO cultures with NMR metabolomics and 2D-DIGE proteomics.
    Blondeel EJM; Ho R; Schulze S; Sokolenko S; Guillemette SR; Slivac I; Durocher Y; Guillemette JG; McConkey BJ; Chang D; Aucoin MG
    J Biotechnol; 2016 Sep; 234():127-138. PubMed ID: 27496566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic analysis of antibody producing Chinese hamster ovary cell culture under different stresses conditions.
    Badsha MB; Kurata H; Onitsuka M; Oga T; Omasa T
    J Biosci Bioeng; 2016 Jul; 122(1):117-24. PubMed ID: 26803706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of amino acid additions on ammonium stressed CHO cells.
    Chen P; Harcum SW
    J Biotechnol; 2005 May; 117(3):277-86. PubMed ID: 15862358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell engineering and cultivation of chinese hamster ovary (CHO) cells.
    Omasa T; Onitsuka M; Kim WD
    Curr Pharm Biotechnol; 2010 Apr; 11(3):233-40. PubMed ID: 20210750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-omic profiling -of EPO-producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production.
    Ley D; Seresht AK; Engmark M; Magdenoska O; Nielsen KF; Kildegaard HF; Andersen MR
    Biotechnol Bioeng; 2015 Nov; 112(11):2373-87. PubMed ID: 25995028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolomic profiling of CHO fed-batch growth phases at 10, 100, and 1,000 L.
    Vodopivec M; Lah L; Narat M; Curk T
    Biotechnol Bioeng; 2019 Oct; 116(10):2720-2729. PubMed ID: 31184374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism.
    Hefzi H; Ang KS; Hanscho M; Bordbar A; Ruckerbauer D; Lakshmanan M; Orellana CA; Baycin-Hizal D; Huang Y; Ley D; Martinez VS; Kyriakopoulos S; Jiménez NE; Zielinski DC; Quek LE; Wulff T; Arnsdorf J; Li S; Lee JS; Paglia G; Loira N; Spahn PN; Pedersen LE; Gutierrez JM; King ZA; Lund AM; Nagarajan H; Thomas A; Abdel-Haleem AM; Zanghellini J; Kildegaard HF; Voldborg BG; Gerdtzen ZP; Betenbaugh MJ; Palsson BO; Andersen MR; Nielsen LK; Borth N; Lee DY; Lewis NE
    Cell Syst; 2016 Nov; 3(5):434-443.e8. PubMed ID: 27883890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.
    Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR
    Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining mechanistic and data-driven approaches to gain process knowledge on the control of the metabolic shift to lactate uptake in a fed-batch CHO process.
    Zalai D; Koczka K; Párta L; Wechselberger P; Klein T; Herwig C
    Biotechnol Prog; 2015; 31(6):1657-68. PubMed ID: 26439213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based identification of cell-cycle-dependent metabolism and putative autocrine effects in antibody producing CHO cell culture.
    Möller J; Korte K; Pörtner R; Zeng AP; Jandt U
    Biotechnol Bioeng; 2018 Dec; 115(12):2996-3008. PubMed ID: 30171773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genome-scale metabolic network model and machine learning predict amino acid concentrations in Chinese Hamster Ovary cell cultures.
    Schinn SM; Morrison C; Wei W; Zhang L; Lewis NE
    Biotechnol Bioeng; 2021 May; 118(5):2118-2123. PubMed ID: 33580712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: History, key components, and optimization strategies.
    Ritacco FV; Wu Y; Khetan A
    Biotechnol Prog; 2018 Nov; 34(6):1407-1426. PubMed ID: 30290072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.
    Popp O; Müller D; Didzus K; Paul W; Lipsmeier F; Kirchner F; Niklas J; Mauch K; Beaucamp N
    Biotechnol Bioeng; 2016 Sep; 113(9):2005-19. PubMed ID: 26913695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.