These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 29393630)
21. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630 [TBL] [Abstract][Full Text] [Related]
22. Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness. Shi P; Laude A; Yeong WY J Biomed Mater Res A; 2017 Apr; 105(4):1009-1018. PubMed ID: 27935198 [TBL] [Abstract][Full Text] [Related]
23. Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids. Zhang YS; Pi Q; van Genderen AM J Vis Exp; 2017 Aug; (126):. PubMed ID: 28829418 [TBL] [Abstract][Full Text] [Related]
24. Applications of Alginate-Based Bioinks in 3D Bioprinting. Axpe E; Oyen ML Int J Mol Sci; 2016 Nov; 17(12):. PubMed ID: 27898010 [TBL] [Abstract][Full Text] [Related]
25. 3D printing facilitated scaffold-free tissue unit fabrication. Tan Y; Richards DJ; Trusk TC; Visconti RP; Yost MJ; Kindy MS; Drake CJ; Argraves WS; Markwald RR; Mei Y Biofabrication; 2014 Jun; 6(2):024111. PubMed ID: 24717646 [TBL] [Abstract][Full Text] [Related]
26. Cell specificity of magnetic cell seeding approach to hydrogel colonization. Singh R; Wieser A; Reakasame S; Detsch R; Dietel B; Alexiou C; Boccaccini AR; Cicha I J Biomed Mater Res A; 2017 Nov; 105(11):2948-2957. PubMed ID: 28639348 [TBL] [Abstract][Full Text] [Related]
27. Impact of the composition of alginate and gelatin derivatives in bioconjugated hydrogels on the fabrication of cell sheets and spherical tissues with living cell sheaths. Liu Y; Sakai S; Taya M Acta Biomater; 2013 May; 9(5):6616-23. PubMed ID: 23395920 [TBL] [Abstract][Full Text] [Related]
28. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996 [TBL] [Abstract][Full Text] [Related]
29. Horseradish peroxidase/catalase-mediated cell-laden alginate-based hydrogel tube production in two-phase coaxial flow of aqueous solutions for filament-like tissues fabrication. Sakai S; Liu Y; Mah EJ; Taya M Biofabrication; 2013 Mar; 5(1):015012. PubMed ID: 23319520 [TBL] [Abstract][Full Text] [Related]
30. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
31. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429 [TBL] [Abstract][Full Text] [Related]
32. Optimizing Photo-Encapsulation Viability of Heart Valve Cell Types in 3D Printable Composite Hydrogels. Kang LH; Armstrong PA; Lee LJ; Duan B; Kang KH; Butcher JT Ann Biomed Eng; 2017 Feb; 45(2):360-377. PubMed ID: 27106636 [TBL] [Abstract][Full Text] [Related]
33. Three-dimensional printing fiber reinforced hydrogel composites. Bakarich SE; Gorkin R; in het Panhuis M; Spinks GM ACS Appl Mater Interfaces; 2014 Sep; 6(18):15998-6006. PubMed ID: 25197745 [TBL] [Abstract][Full Text] [Related]
34. Hydrogel matrices based on elastin and alginate for tissue engineering applications. Silva R; Singh R; Sarker B; Papageorgiou DG; Juhasz-Bortuzzo JA; Roether JA; Cicha I; Kaschta J; Schubert DW; Chrissafis K; Detsch R; Boccaccini AR Int J Biol Macromol; 2018 Jul; 114():614-625. PubMed ID: 29572141 [TBL] [Abstract][Full Text] [Related]
35. Light-triggered cross-linking of alginates with caged Ca2+. Cui J; Wang M; Zheng Y; Rodríguez Muñiz GM; del Campo A Biomacromolecules; 2013 May; 14(5):1251-6. PubMed ID: 23517470 [TBL] [Abstract][Full Text] [Related]
36. Green bioprinting: extrusion-based fabrication of plant cell-laden biopolymer hydrogel scaffolds. Seidel J; Ahlfeld T; Adolph M; Kümmritz S; Steingroewer J; Krujatz F; Bley T; Gelinsky M; Lode A Biofabrication; 2017 Nov; 9(4):045011. PubMed ID: 28837040 [TBL] [Abstract][Full Text] [Related]
37. Mechanical properties and failure analysis of visible light crosslinked alginate-based tissue sealants. Charron PN; Fenn SL; Poniz A; Oldinski RA J Mech Behav Biomed Mater; 2016 Jun; 59():314-321. PubMed ID: 26897093 [TBL] [Abstract][Full Text] [Related]
38. Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics. Valentin TM; Leggett SE; Chen PY; Sodhi JK; Stephens LH; McClintock HD; Sim JY; Wong IY Lab Chip; 2017 Oct; 17(20):3474-3488. PubMed ID: 28906525 [TBL] [Abstract][Full Text] [Related]
39. Laser-assisted printing of alginate long tubes and annular constructs. Yan J; Huang Y; Chrisey DB Biofabrication; 2013 Mar; 5(1):015002. PubMed ID: 23172571 [TBL] [Abstract][Full Text] [Related]
40. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. Kundu J; Shim JH; Jang J; Kim SW; Cho DW J Tissue Eng Regen Med; 2015 Nov; 9(11):1286-97. PubMed ID: 23349081 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]