BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29393631)

  • 1. Engineering Bifunctional Enzymes Capable of Adenylating and Selectively Methylating the Side Chain or Core of Amino Acids.
    Lundy TA; Mori S; Garneau-Tsodikova S
    ACS Synth Biol; 2018 Feb; 7(2):399-404. PubMed ID: 29393631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding Substrate Promiscuity by Engineering a Novel Adenylating-Methylating NRPS Bifunctional Enzyme.
    Shrestha SK; Garneau-Tsodikova S
    Chembiochem; 2016 Jul; 17(14):1328-32. PubMed ID: 27128382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the limits of interrupted adenylation domains by engineering a trifunctional enzyme capable of adenylation, N-, and S-methylation.
    Lundy TA; Mori S; Garneau-Tsodikova S
    Org Biomol Chem; 2019 Jan; 17(5):1169-1175. PubMed ID: 30644493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unimodular Methylation by Adenylation-Thiolation Domains Containing an Embedded Methyltransferase.
    Mori S; Garneau-Tsodikova S; Tsodikov OV
    J Mol Biol; 2020 Oct; 432(21):5802-5808. PubMed ID: 32920052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lessons learned in engineering interrupted adenylation domains when attempting to create trifunctional enzymes from three independent monofunctional ones.
    Lundy TA; Mori S; Garneau-Tsodikova S
    RSC Adv; 2020 Sep; 10(56):34299-34307. PubMed ID: 35519055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis.
    Labby KJ; Watsula SG; Garneau-Tsodikova S
    Nat Prod Rep; 2015 May; 32(5):641-53. PubMed ID: 25622971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a Unique Interrupted Adenylation Domain That Can Catalyze Three Reactions.
    Lundy TA; Mori S; Thamban Chandrika N; Garneau-Tsodikova S
    ACS Chem Biol; 2020 Jan; 15(1):282-289. PubMed ID: 31887013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering Nature's Intricate Way of N,S-Dimethylating l-Cysteine: Sequential Action of Two Bifunctional Adenylation Domains.
    Mori S; Garzan A; Tsodikov OV; Garneau-Tsodikova S
    Biochemistry; 2017 Nov; 56(46):6087-6097. PubMed ID: 29112395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Fungal Nonribosomal Peptide Synthetase-like Enzymes by Heterologous Expression and Domain Swapping.
    van Dijk JW; Guo CJ; Wang CC
    Org Lett; 2016 Dec; 18(24):6236-6239. PubMed ID: 27978657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenylation and S-methylation of cysteine by the bifunctional enzyme TioN in thiocoraline biosynthesis.
    Al-Mestarihi AH; Villamizar G; Fernández J; Zolova OE; Lombó F; Garneau-Tsodikova S
    J Am Chem Soc; 2014 Dec; 136(49):17350-4. PubMed ID: 25409494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for backbone N-methylation by an interrupted adenylation domain.
    Mori S; Pang AH; Lundy TA; Garzan A; Tsodikov OV; Garneau-Tsodikova S
    Nat Chem Biol; 2018 May; 14(5):428-430. PubMed ID: 29556104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenylation Domains in Nonribosomal Peptide Engineering.
    Stanišić A; Kries H
    Chembiochem; 2019 Jun; 20(11):1347-1356. PubMed ID: 30629787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.
    Ishikawa F; Miyamoto K; Konno S; Kasai S; Kakeya H
    ACS Chem Biol; 2015 Dec; 10(12):2816-26. PubMed ID: 26474351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A thorough analysis and categorization of bacterial interrupted adenylation domains, including previously unidentified families.
    Lundy TA; Mori S; Garneau-Tsodikova S
    RSC Chem Biol; 2020 Oct; 1(4):233-250. PubMed ID: 34458763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing the Adenylation Activities and Protein-Protein Interactions of Aryl Acid Adenylating Enzymes.
    Ishikawa F; Kasai S; Kakeya H; Tanabe G
    Chembiochem; 2017 Nov; 18(22):2199-2204. PubMed ID: 28871667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KtzJ-dependent serine activation and O-methylation by KtzH for kutznerides biosynthesis.
    Zolova OE; Garneau-Tsodikova S
    J Antibiot (Tokyo); 2014 Jan; 67(1):59-64. PubMed ID: 24105608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ways of assembling complex natural products on modular nonribosomal peptide synthetases.
    Mootz HD; Schwarzer D; Marahiel MA
    Chembiochem; 2002 Jun; 3(6):490-504. PubMed ID: 12325005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of Nonribosomal Peptide Synthetase Adenylation Domain Activity Using a Continuous Hydroxylamine Release Assay.
    Duckworth BP; Wilson DJ; Aldrich CC
    Methods Mol Biol; 2016; 1401():53-61. PubMed ID: 26831700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the structural analysis of adenylation domains in natural product biosynthesis.
    Miyanaga A; Kudo F; Eguchi T
    Curr Opin Chem Biol; 2022 Dec; 71():102212. PubMed ID: 36116190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creating functional engineered variants of the single-module non-ribosomal peptide synthetase IndC by T domain exchange.
    Beer R; Herbst K; Ignatiadis N; Kats I; Adlung L; Meyer H; Niopek D; Christiansen T; Georgi F; Kurzawa N; Meichsner J; Rabe S; Riedel A; Sachs J; Schessner J; Schmidt F; Walch P; Niopek K; Heinemann T; Eils R; Di Ventura B
    Mol Biosyst; 2014 Jul; 10(7):1709-18. PubMed ID: 24457530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.