These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29393678)

  • 1. On the virtues of automated quantitative structure-activity relationship: the new kid on the block.
    de Oliveira MT; Katekawa E
    Future Med Chem; 2018 Feb; 10(3):335-342. PubMed ID: 29393678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AutoQSAR: an automated machine learning tool for best-practice quantitative structure-activity relationship modeling.
    Dixon SL; Duan J; Smith E; Von Bargen CD; Sherman W; Repasky MP
    Future Med Chem; 2016 Oct; 8(15):1825-1839. PubMed ID: 27643715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel semi-automated methodology for developing highly predictive QSAR models: application for development of QSAR models for insect repellent amides.
    Bhonsle JB; Bhattacharjee AK; Gupta RK
    J Mol Model; 2007 Jan; 13(1):179-208. PubMed ID: 17048015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative structure-activity relationship models that stand the test of time.
    Davis AM; Wood DJ
    Mol Pharm; 2013 Apr; 10(4):1183-90. PubMed ID: 23316903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial QSAR of ambergris fragrance compounds.
    Kovatcheva A; Golbraikh A; Oloff S; Xiao YD; Zheng W; Wolschann P; Buchbauer G; Tropsha A
    J Chem Inf Comput Sci; 2004; 44(2):582-95. PubMed ID: 15032539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critically Assessing the Predictive Power of QSAR Models for Human Liver Microsomal Stability.
    Liu R; Schyman P; Wallqvist A
    J Chem Inf Model; 2015 Aug; 55(8):1566-75. PubMed ID: 26170251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.
    Martin E; Mukherjee P; Sullivan D; Jansen J
    J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models.
    Zhang S; Golbraikh A; Oloff S; Kohn H; Tropsha A
    J Chem Inf Model; 2006; 46(5):1984-95. PubMed ID: 16995729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.
    Mohr JA; Jain BJ; Obermayer K
    J Chem Inf Model; 2008 Sep; 48(9):1868-81. PubMed ID: 18767832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does rational selection of training and test sets improve the outcome of QSAR modeling?
    Martin TM; Harten P; Young DM; Muratov EN; Golbraikh A; Zhu H; Tropsha A
    J Chem Inf Model; 2012 Oct; 52(10):2570-8. PubMed ID: 23030316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general method for exploiting QSAR models in lead optimization.
    Lewis RA
    J Med Chem; 2005 Mar; 48(5):1638-48. PubMed ID: 15743205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Predictive QSAR Models of 4-Thiazolidinones Antitrypanosomal Activity Using Modern Machine Learning Algorithms.
    Kryshchyshyn A; Devinyak O; Kaminskyy D; Grellier P; Lesyk R
    Mol Inform; 2018 May; 37(5):e1700078. PubMed ID: 29134756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F.
    Wang XS; Tang H; Golbraikh A; Tropsha A
    J Chem Inf Model; 2008 May; 48(5):997-1013. PubMed ID: 18470978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning from Multiple Classifier Systems: Perspectives for Improving Decision Making of QSAR Models in Medicinal Chemistry.
    Pham-The H; Nam NH; Nga DV; Hai DT; Dieguez-Santana K; Marrero-Poncee Y; Castillo-Garit JA; Casanola-Martin GM; Le-Thi-Thu H
    Curr Top Med Chem; 2018 Feb; 17(30):3269-3288. PubMed ID: 29231145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSAR-assisted-MMPA to expand chemical transformation space for lead optimization.
    Fu L; Yang ZY; Yang ZJ; Yin MZ; Lu AP; Chen X; Liu S; Hou TJ; Cao DS
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33418563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSAR without borders.
    Muratov EN; Bajorath J; Sheridan RP; Tetko IV; Filimonov D; Poroikov V; Oprea TI; Baskin II; Varnek A; Roitberg A; Isayev O; Curtarolo S; Fourches D; Cohen Y; Aspuru-Guzik A; Winkler DA; Agrafiotis D; Cherkasov A; Tropsha A
    Chem Soc Rev; 2020 Jun; 49(11):3525-3564. PubMed ID: 32356548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-task learning models for predicting active compounds.
    Zhao Z; Qin J; Gou Z; Zhang Y; Yang Y
    J Biomed Inform; 2020 Aug; 108():103484. PubMed ID: 32615159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of QSAR sets with a self-organizing map.
    Guha R; Serra JR; Jurs PC
    J Mol Graph Model; 2004 Sep; 23(1):1-14. PubMed ID: 15331049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Analysis of QSAR-based vs. Chemical Similarity Based Predictors of GPCRs Binding Affinity.
    Luo M; Wang XS; Tropsha A
    Mol Inform; 2016 Jan; 35(1):36-41. PubMed ID: 27491652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling.
    Mansouri K; Grulke CM; Richard AM; Judson RS; Williams AJ
    SAR QSAR Environ Res; 2016 Nov; 27(11):939-965. PubMed ID: 27885862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.