These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 29393991)
1. Comparison of crop yield sensitivity to ozone between open-top chamber and free-air experiments. Feng Z; Uddling J; Tang H; Zhu J; Kobayashi K Glob Chang Biol; 2018 Jun; 24(6):2231-2238. PubMed ID: 29393991 [TBL] [Abstract][Full Text] [Related]
2. Effects of ozone on maize (Zea mays L.) photosynthetic physiology, biomass and yield components based on exposure- and flux-response relationships. Peng J; Shang B; Xu Y; Feng Z; Calatayud V Environ Pollut; 2020 Jan; 256():113466. PubMed ID: 31679879 [TBL] [Abstract][Full Text] [Related]
3. Ground-level O3 pollution and its impacts on food crops in China: a review. Feng Z; Hu E; Wang X; Jiang L; Liu X Environ Pollut; 2015 Apr; 199():42-8. PubMed ID: 25618365 [TBL] [Abstract][Full Text] [Related]
4. Assessment of ozone toxicity among 14 Indian wheat cultivars under field conditions: growth and productivity. Singh AA; Fatima A; Mishra AK; Chaudhary N; Mukherjee A; Agrawal M; Agrawal SB Environ Monit Assess; 2018 Mar; 190(4):190. PubMed ID: 29502252 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the effects of ozone on yield of Japanese rice (Oryza sativa L.) based on stomatal ozone uptake. Yamaguchi M; Hoshino D; Inada H; Akhtar N; Sumioka C; Takeda K; Izuta T Environ Pollut; 2014 Jan; 184():472-80. PubMed ID: 24125940 [TBL] [Abstract][Full Text] [Related]
6. From critical levels to critical loads for ozone: a discussion of a new experimental and modelling approach for establishing flux-response relationships for agricultural crops and native plant species. Grünhage L; Jäger HJ Environ Pollut; 2003; 125(1):99-110. PubMed ID: 12804832 [TBL] [Abstract][Full Text] [Related]
7. Quantification of ozone exposure- and stomatal uptake-yield response relationships for soybean in Northeast China. Zhang W; Feng Z; Wang X; Liu X; Hu E Sci Total Environ; 2017 Dec; 599-600():710-720. PubMed ID: 28494296 [TBL] [Abstract][Full Text] [Related]
8. Unraveling the difference of sensitivity to ozone between non-hybrid native poplar and hybrid poplar clones: A flux-based dose-response analysis. Hoshika Y; Pollastrini M; Marzuoli R; Gerosa G; Marra E; Moura BB; Agathokleous E; Calatayud V; Feng Z; Sicard P; Paoletti E Environ Pollut; 2024 Oct; 358():124524. PubMed ID: 38986760 [TBL] [Abstract][Full Text] [Related]
9. Assessment of rice yield loss due to exposure to ozone pollution in Southern Vietnam. Danh NT; Huy LN; Oanh NTK Sci Total Environ; 2016 Oct; 566-567():1069-1079. PubMed ID: 27265741 [TBL] [Abstract][Full Text] [Related]
10. Large variability in ambient ozone sensitivity across 19 ethylenediurea-treated Chinese cultivars of soybean is driven by total ascorbate. Jiang L; Feng Z; Dai L; Shang B; Paoletti E J Environ Sci (China); 2018 Feb; 64():10-22. PubMed ID: 29478629 [TBL] [Abstract][Full Text] [Related]
11. Novel ozone flux metrics incorporating the detoxification process in the apoplast: An application to Chinese winter wheat. Wu R; Agathokleous E; Feng Z Sci Total Environ; 2021 May; 767():144588. PubMed ID: 33429267 [TBL] [Abstract][Full Text] [Related]
12. [Effects of long-term ozone exposure on chlorophyll a fluorescence and gas exchange of winter-wheat leaves]. Zheng YF; Zhao Z; Wu RJ; Hu CD; Liu HJ Huan Jing Ke Xue; 2010 Feb; 31(2):472-9. PubMed ID: 20391720 [TBL] [Abstract][Full Text] [Related]
13. Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: Growth, gas-exchange, antioxidant status, grain yield and quality. Pandey AK; Ghosh A; Agrawal M; Agrawal SB Ecotoxicol Environ Saf; 2018 Aug; 158():59-68. PubMed ID: 29656165 [TBL] [Abstract][Full Text] [Related]
14. A dose-response relationship for marketable yield reduction of two lettuce (Lactuca sativa L.) cultivars exposed to tropospheric ozone in Southern Europe. Marzuoli R; Finco A; Chiesa M; Gerosa G Environ Sci Pollut Res Int; 2017 Dec; 24(34):26249-26258. PubMed ID: 28028698 [TBL] [Abstract][Full Text] [Related]
15. Estimated crop yield losses due to surface ozone exposure and economic damage in India. Debaje SB Environ Sci Pollut Res Int; 2014 Jun; 21(12):7329-38. PubMed ID: 24573465 [TBL] [Abstract][Full Text] [Related]
16. Ascorbic acid and thiols as potential biomarkers of ozone tolerance in tropical wheat cultivars. Fatima A; Singh AA; Mukherjee A; Agrawal M; Agrawal SB Ecotoxicol Environ Saf; 2019 Apr; 171():701-708. PubMed ID: 30658306 [TBL] [Abstract][Full Text] [Related]
17. Effects of ground-level ozone (O3) pollution on the yields of rice and winter wheat in the Yangtze River Delta. Feng ZW; Jin MH; Zhang FZ; Huang YZ J Environ Sci (China); 2003 May; 15(3):360-2. PubMed ID: 12945536 [TBL] [Abstract][Full Text] [Related]
18. Effects of elevated ozone on growth and yield of field-grown rice in Yangtze River Delta, China. Chen Z; Wang X; Feng Z; Zheng F; Duan X; Yang W J Environ Sci (China); 2008; 20(3):320-5. PubMed ID: 18595399 [TBL] [Abstract][Full Text] [Related]
19. Ozone exposure- and flux-yield response relationships for maize. Peng J; Shang B; Xu Y; Feng Z; Pleijel H; Calatayud V Environ Pollut; 2019 Sep; 252(Pt A):1-7. PubMed ID: 31146222 [TBL] [Abstract][Full Text] [Related]
20. Physiological and developmental effects of O3 on cottonwood growth in urban and rural sites. Gregg JW; Jones CG; Dawson TE Ecol Appl; 2006 Dec; 16(6):2368-81. PubMed ID: 17205911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]