These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 29394024)
1. The Deceptively Similar Ruthenium(III) Drug Candidates KP1019 and NAMI-A Have Different Actions. What Did We Learn in the Past 30 Years? Alessio E; Messori L Met Ions Life Sci; 2018 Feb; 18():. PubMed ID: 29394024 [TBL] [Abstract][Full Text] [Related]
2. NAMI-A and KP1019/1339, Two Iconic Ruthenium Anticancer Drug Candidates Face-to-Face: A Case Story in Medicinal Inorganic Chemistry. Alessio E; Messori L Molecules; 2019 May; 24(10):. PubMed ID: 31137659 [TBL] [Abstract][Full Text] [Related]
6. EPR as a probe of the intracellular speciation of ruthenium(III) anticancer compounds. Webb MI; Walsby CJ Metallomics; 2013 Dec; 5(12):1624-33. PubMed ID: 24057014 [TBL] [Abstract][Full Text] [Related]
7. Cellular uptake and subcellular distribution of ruthenium-based metallodrugs under clinical investigation versus cisplatin. Groessl M; Zava O; Dyson PJ Metallomics; 2011 Jun; 3(6):591-9. PubMed ID: 21399784 [TBL] [Abstract][Full Text] [Related]
8. Tracking antitumor metallodrugs: promising agents with the Ru(II)- and Fe(II)-cyclopentadienyl scaffolds. Morais TS; Valente A; Tomaz AI; Marques F; Garcia MH Future Med Chem; 2016 Apr; 8(5):527-44. PubMed ID: 27096164 [TBL] [Abstract][Full Text] [Related]
9. Intracellular protein binding patterns of the anticancer ruthenium drugs KP1019 and KP1339. Heffeter P; Böck K; Atil B; Reza Hoda MA; Körner W; Bartel C; Jungwirth U; Keppler BK; Micksche M; Berger W; Koellensperger G J Biol Inorg Chem; 2010 Jun; 15(5):737-48. PubMed ID: 20221888 [TBL] [Abstract][Full Text] [Related]
10. The hydrolysis mechanism of the anticancer ruthenium drugs NAMI-A and ICR investigated by DFT-PCM calculations. Vargiu AV; Robertazzi A; Magistrato A; Ruggerone P; Carloni P J Phys Chem B; 2008 Apr; 112(14):4401-9. PubMed ID: 18348562 [TBL] [Abstract][Full Text] [Related]
11. Ruthenium-based chemotherapeutics: are they ready for prime time? Antonarakis ES; Emadi A Cancer Chemother Pharmacol; 2010 May; 66(1):1-9. PubMed ID: 20213076 [TBL] [Abstract][Full Text] [Related]
12. Influence of ascorbic acid on the activity of the investigational anticancer drug KP1019. Bartel C; Egger AE; Jakupec MA; Heffeter P; Galanski MS; Berger W; Keppler BK J Biol Inorg Chem; 2011 Dec; 16(8):1205-15. PubMed ID: 21706338 [TBL] [Abstract][Full Text] [Related]
13. The hydrolysis of the anti-cancer ruthenium complex NAMI-A affects its DNA binding and antimetastatic activity: an NMR evaluation. Bacac M; Hotze AC; van der Schilden K; Haasnoot JG; Pacor S; Alessio E; Sava G; Reedijk J J Inorg Biochem; 2004 Feb; 98(2):402-12. PubMed ID: 14729322 [TBL] [Abstract][Full Text] [Related]
14. Is matching ruthenium with dithiocarbamato ligands a potent chemotherapeutic weapon in oncology? Nardon C; Brustolin L; Fregona D Future Med Chem; 2016; 8(2):211-26. PubMed ID: 26807601 [TBL] [Abstract][Full Text] [Related]
15. Ruthenium metalation of proteins: the X-ray structure of the complex formed between NAMI-A and hen egg white lysozyme. Messori L; Merlino A Dalton Trans; 2014 Apr; 43(16):6128-31. PubMed ID: 24553967 [TBL] [Abstract][Full Text] [Related]
16. Structure-activity relationships for NAMI-A-type complexes (HL)[trans-RuCl4L(S-dmso)ruthenate(III)] (L = imidazole, indazole, 1,2,4-triazole, 4-amino-1,2,4-triazole, and 1-methyl-1,2,4-triazole): aquation, redox properties, protein binding, and antiproliferative activity. Groessl M; Reisner E; Hartinger CG; Eichinger R; Semenova O; Timerbaev AR; Jakupec MA; Arion VB; Keppler BK J Med Chem; 2007 May; 50(9):2185-93. PubMed ID: 17402720 [TBL] [Abstract][Full Text] [Related]
17. Ruthenium antimetastatic agents. Alessio E; Mestroni G; Bergamo A; Sava G Curr Top Med Chem; 2004; 4(15):1525-35. PubMed ID: 15579094 [TBL] [Abstract][Full Text] [Related]
18. Effects of the ruthenium-based drug NAMI-A on the roles played by TGF-β1 in the metastatic process. Brescacin L; Masi A; Sava G; Bergamo A J Biol Inorg Chem; 2015 Oct; 20(7):1163-73. PubMed ID: 26369538 [TBL] [Abstract][Full Text] [Related]
19. Approaching tumour therapy beyond platinum drugs: status of the art and perspectives of ruthenium drug candidates. Bergamo A; Gaiddon C; Schellens JH; Beijnen JH; Sava G J Inorg Biochem; 2012 Jan; 106(1):90-9. PubMed ID: 22112845 [TBL] [Abstract][Full Text] [Related]
20. Inhibitory effects of NAMI-A-like ruthenium complexes on prion neuropeptide fibril formation. Wang X; Zhu D; Zhao C; He L; Du W Metallomics; 2015 May; 7(5):837-46. PubMed ID: 25856332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]