BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29394042)

  • 1. Dynamic Tracking of Highly Toxic Intermediates in Photocatalytic Degradation of Pentachlorophenol by Continuous Flow Chemiluminescence.
    Ma HY; Zhao L; Wang DB; Zhang H; Guo LH
    Environ Sci Technol; 2018 Mar; 52(5):2870-2877. PubMed ID: 29394042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic monitoring and regulation of pentachlorophenol photodegradation process by chemiluminescence and TiO
    Chen F; Zhao L; Yu W; Wang Y; Zhang H; Guo LH
    J Hazard Mater; 2020 Nov; 399():123073. PubMed ID: 32534397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of reactive oxygen species (ROS) in the photocatalytic degradation of pentachlorophenol and its main toxic intermediates by TiO
    Ma HY; Zhao L; Guo LH; Zhang H; Chen FJ; Yu WC
    J Hazard Mater; 2019 May; 369():719-726. PubMed ID: 30831524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic control of pentachlorophenol photodegradation process using P25/PDA/BiOBr through regulation of photo-induced active substances and chemiluminescence.
    Chen F; Yu W; Wang Y; Wang S; Liang Y; Wang L; Liang Y; Zhao L; Wang Y
    Chemosphere; 2022 Nov; 307(Pt 2):135914. PubMed ID: 35939990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential mechanism for pentachlorophenol-induced carcinogenicity: a novel mechanism for metal-independent production of hydroxyl radicals.
    Zhu BZ; Shan GQ
    Chem Res Toxicol; 2009 Jun; 22(6):969-77. PubMed ID: 19408893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online detection of reactive oxygen species in ultraviolet (UV)-Irradiated nano-TiO2 suspensions by continuous flow chemiluminescence.
    Wang D; Zhao L; Guo LH; Zhang H
    Anal Chem; 2014 Nov; 86(21):10535-9. PubMed ID: 25275618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic chemiluminescence production from the degradation of haloaromatic pollutants during environmentally-friendly advanced oxidation processes: Mechanism, structure-activity relationship and potential applications.
    Zhu B; Shen C; Gao H; Zhu L; Shao J; Mao L
    J Environ Sci (China); 2017 Dec; 62():68-83. PubMed ID: 29289294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a microbial toxicity assay for monitoring treatment effectiveness of pentachlorophenol in water using UV photolysis and TiO2 photocatalysis.
    Kim JK; Choi K; Cho IH; Son HS; Zoh KD
    J Hazard Mater; 2007 Sep; 148(1-2):281-6. PubMed ID: 17368714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism for metal-independent production of hydroxyl radicals by hydrogen peroxide and halogenated quinones.
    Zhu BZ; Kalyanaraman B; Jiang GB
    Proc Natl Acad Sci U S A; 2007 Nov; 104(45):17575-8. PubMed ID: 17968010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Analysis of Transcriptional Changes and Genes That Contribute to Fitness during Degradation of the Anthropogenic Pollutant Pentachlorophenol by Sphingobium chlorophenolicum.
    Flood JJ; Copley SD
    mSystems; 2018; 3(6):. PubMed ID: 30505947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro immunomodulation by pentachlorophenol in phagocytes from an estuarine teleost, Fundulus heteroclitus, as measured by chemiluminescence activity.
    Roszell LE; Anderson RS
    Arch Environ Contam Toxicol; 1993 Nov; 25(4):492-6. PubMed ID: 8239715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave/H2O2 efficiency in pentachlorophenol removal from aqueous solutions.
    Asgari G; Seidmohammadi A; Chavoshani A; Rahmani AR
    J Res Health Sci; 2014; 14(1):36-9. PubMed ID: 24402848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization and characterization of a flow injection electrochemical system for pentachlorophenol assay.
    Male KB; Saby C; Luong JH
    Anal Chem; 1998 Oct; 70(19):4134-9. PubMed ID: 21651250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pentachlorophenol hydroxylase, a poorly functioning enzyme required for degradation of pentachlorophenol by Sphingobium chlorophenolicum.
    Hlouchova K; Rudolph J; Pietari JM; Behlen LS; Copley SD
    Biochemistry; 2012 May; 51(18):3848-60. PubMed ID: 22482720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation pathways of pentachlorophenol by photo-Fenton systems in the presence of iron(III), humic acid, and hydrogen peroxide.
    Fukushima M; Tatsumi K
    Environ Sci Technol; 2001 May; 35(9):1771-8. PubMed ID: 11355191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of pentachlorophenol in cyclodextrin extraction effluent using a photocatalytic process.
    Hanna K; de Brauer Ch; Germain P; Chovelon JM; Ferronato C
    Sci Total Environ; 2004 Oct; 332(1-3):51-60. PubMed ID: 15336890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Study on Chemiluminescence of H
    Tang YQ; Liu YJ
    J Org Chem; 2020 Jul; 85(14):9042-9050. PubMed ID: 32543186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequestration of a highly reactive intermediate in an evolving pathway for degradation of pentachlorophenol.
    Yadid I; Rudolph J; Hlouchova K; Copley SD
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):E2182-90. PubMed ID: 23676275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ascorbic acid induced activation of persulfate for pentachlorophenol degradation.
    Cao M; Hou Y; Zhang E; Tu S; Xiong S
    Chemosphere; 2019 Aug; 229():200-205. PubMed ID: 31078034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic degradation of pentachlorophenol by visible light Ν-F-TiO₂ in the presence of oxalate ions: optimization, modeling, and scavenging studies.
    Antonopoulou M; Konstantinou I
    Environ Sci Pollut Res Int; 2015 Jun; 22(12):9438-48. PubMed ID: 25604561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.