BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29394043)

  • 1. Ligand Binding Pathways and Conformational Transitions of the HIV Protease.
    Miao Y; Huang YM; Walker RC; McCammon JA; Chang CA
    Biochemistry; 2018 Mar; 57(9):1533-1541. PubMed ID: 29394043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gaussian accelerated molecular dynamics for elucidation of drug pathways.
    Bhattarai A; Miao Y
    Expert Opin Drug Discov; 2018 Nov; 13(11):1055-1065. PubMed ID: 30371112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sigmoid Accelerated Molecular Dynamics: An Efficient Enhanced Sampling Method for Biosystems.
    Zhao Y; Zhang J; Zhang H; Gu S; Deng Y; Tu Y; Hou T; Kang Y
    J Phys Chem Lett; 2023 Feb; 14(4):1103-1112. PubMed ID: 36700836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the dynamics of HIV-1 protease: a kinetic network model constructed from atomistic simulations.
    Deng NJ; Zheng W; Gallicchio E; Levy RM
    J Am Chem Soc; 2011 Jun; 133(24):9387-94. PubMed ID: 21561098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replica Exchange Gaussian Accelerated Molecular Dynamics: Improved Enhanced Sampling and Free Energy Calculation.
    Huang YM; McCammon JA; Miao Y
    J Chem Theory Comput; 2018 Apr; 14(4):1853-1864. PubMed ID: 29489349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations.
    Chang CE; Trylska J; Tozzini V; McCammon JA
    Chem Biol Drug Des; 2007 Jan; 69(1):5-13. PubMed ID: 17313452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaussian Accelerated Molecular Dynamics in NAMD.
    Pang YT; Miao Y; Wang Y; McCammon JA
    J Chem Theory Comput; 2017 Jan; 13(1):9-19. PubMed ID: 28034310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations.
    Verkhivker GM
    Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of the Association Pathways for a Pair of Fast and Slow Binding Ligands of HIV-1 Protease.
    Huang YM; Raymundo MA; Chen W; Chang CA
    Biochemistry; 2017 Mar; 56(9):1311-1323. PubMed ID: 28060481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of high affinity pentasaccharide binding to antithrombin, insights from Gaussian accelerated molecular dynamics simulations.
    Balogh G; Komáromi I; Bereczky Z
    J Biomol Struct Dyn; 2020 Oct; 38(16):4718-4732. PubMed ID: 31686597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and binding insights into HIV-1 protease and P2-ligand interactions through molecular dynamics simulations, binding free energy and principal component analysis.
    Karnati KR; Wang Y
    J Mol Graph Model; 2019 Nov; 92():112-122. PubMed ID: 31351319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate ensemble molecular dynamics binding free energy ranking of multidrug-resistant HIV-1 proteases.
    Sadiq SK; Wright DW; Kenway OA; Coveney PV
    J Chem Inf Model; 2010 May; 50(5):890-905. PubMed ID: 20384328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding Analysis Using Accelerated Molecular Dynamics Simulations and Future Perspectives.
    Pawnikar S; Bhattarai A; Wang J; Miao Y
    Adv Appl Bioinform Chem; 2022; 15():1-19. PubMed ID: 35023931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.
    Chetty S; Bhakat S; Martin AJ; Soliman ME
    J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HIV-1 protease flaps spontaneously close to the correct structure in simulations following manual placement of an inhibitor into the open state.
    Hornak V; Okur A; Rizzo RC; Simmerling C
    J Am Chem Soc; 2006 Mar; 128(9):2812-3. PubMed ID: 16506755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.
    Miao Y; McCammon JA
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):3036-3041. PubMed ID: 29507218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The full activation mechanism of the adenosine A
    Li Y; Sun J; Li D; Lin J
    Proc Natl Acad Sci U S A; 2022 Oct; 119(42):e2203702119. PubMed ID: 36215480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand conformational and solvation/desolvation free energy in protein-ligand complex formation.
    Kolár M; Fanfrlík J; Hobza P
    J Phys Chem B; 2011 Apr; 115(16):4718-24. PubMed ID: 21466174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ritonavir and xk263 Binding-Unbinding with HIV-1 Protease: Pathways, Energy and Comparison.
    Sun J; Raymundo MAV; Chang CA
    Life (Basel); 2022 Jan; 12(1):. PubMed ID: 35054509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative fluctuations of unliganded and substrate-bound HIV-1 protease: a structure-based analysis on a variety of conformations from crystallography and molecular dynamics simulations.
    Kurt N; Scott WR; Schiffer CA; Haliloglu T
    Proteins; 2003 May; 51(3):409-22. PubMed ID: 12696052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.