These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 29394043)
1. Ligand Binding Pathways and Conformational Transitions of the HIV Protease. Miao Y; Huang YM; Walker RC; McCammon JA; Chang CA Biochemistry; 2018 Mar; 57(9):1533-1541. PubMed ID: 29394043 [TBL] [Abstract][Full Text] [Related]
2. Gaussian accelerated molecular dynamics for elucidation of drug pathways. Bhattarai A; Miao Y Expert Opin Drug Discov; 2018 Nov; 13(11):1055-1065. PubMed ID: 30371112 [TBL] [Abstract][Full Text] [Related]
3. Multiple Parameter Replica Exchange Gaussian Accelerated Molecular Dynamics for Enhanced Sampling and Free Energy Calculation of Biomolecular Systems. Hasse T; Huang YM J Chem Theory Comput; 2024 Aug; 20(15):6485-6499. PubMed ID: 39085770 [TBL] [Abstract][Full Text] [Related]
4. Sigmoid Accelerated Molecular Dynamics: An Efficient Enhanced Sampling Method for Biosystems. Zhao Y; Zhang J; Zhang H; Gu S; Deng Y; Tu Y; Hou T; Kang Y J Phys Chem Lett; 2023 Feb; 14(4):1103-1112. PubMed ID: 36700836 [TBL] [Abstract][Full Text] [Related]
5. Insights into the dynamics of HIV-1 protease: a kinetic network model constructed from atomistic simulations. Deng NJ; Zheng W; Gallicchio E; Levy RM J Am Chem Soc; 2011 Jun; 133(24):9387-94. PubMed ID: 21561098 [TBL] [Abstract][Full Text] [Related]
6. Replica Exchange Gaussian Accelerated Molecular Dynamics: Improved Enhanced Sampling and Free Energy Calculation. Huang YM; McCammon JA; Miao Y J Chem Theory Comput; 2018 Apr; 14(4):1853-1864. PubMed ID: 29489349 [TBL] [Abstract][Full Text] [Related]
7. Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations. Chang CE; Trylska J; Tozzini V; McCammon JA Chem Biol Drug Des; 2007 Jan; 69(1):5-13. PubMed ID: 17313452 [TBL] [Abstract][Full Text] [Related]
8. Gaussian Accelerated Molecular Dynamics in NAMD. Pang YT; Miao Y; Wang Y; McCammon JA J Chem Theory Comput; 2017 Jan; 13(1):9-19. PubMed ID: 28034310 [TBL] [Abstract][Full Text] [Related]
9. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations. Verkhivker GM Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of the Association Pathways for a Pair of Fast and Slow Binding Ligands of HIV-1 Protease. Huang YM; Raymundo MA; Chen W; Chang CA Biochemistry; 2017 Mar; 56(9):1311-1323. PubMed ID: 28060481 [TBL] [Abstract][Full Text] [Related]
11. The mechanism of high affinity pentasaccharide binding to antithrombin, insights from Gaussian accelerated molecular dynamics simulations. Balogh G; Komáromi I; Bereczky Z J Biomol Struct Dyn; 2020 Oct; 38(16):4718-4732. PubMed ID: 31686597 [TBL] [Abstract][Full Text] [Related]
12. Structural and binding insights into HIV-1 protease and P2-ligand interactions through molecular dynamics simulations, binding free energy and principal component analysis. Karnati KR; Wang Y J Mol Graph Model; 2019 Nov; 92():112-122. PubMed ID: 31351319 [TBL] [Abstract][Full Text] [Related]
13. Accurate ensemble molecular dynamics binding free energy ranking of multidrug-resistant HIV-1 proteases. Sadiq SK; Wright DW; Kenway OA; Coveney PV J Chem Inf Model; 2010 May; 50(5):890-905. PubMed ID: 20384328 [TBL] [Abstract][Full Text] [Related]
14. Binding Analysis Using Accelerated Molecular Dynamics Simulations and Future Perspectives. Pawnikar S; Bhattarai A; Wang J; Miao Y Adv Appl Bioinform Chem; 2022; 15():1-19. PubMed ID: 35023931 [TBL] [Abstract][Full Text] [Related]
15. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights. Chetty S; Bhakat S; Martin AJ; Soliman ME J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669 [TBL] [Abstract][Full Text] [Related]
16. HIV-1 protease flaps spontaneously close to the correct structure in simulations following manual placement of an inhibitor into the open state. Hornak V; Okur A; Rizzo RC; Simmerling C J Am Chem Soc; 2006 Mar; 128(9):2812-3. PubMed ID: 16506755 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor. Miao Y; McCammon JA Proc Natl Acad Sci U S A; 2018 Mar; 115(12):3036-3041. PubMed ID: 29507218 [TBL] [Abstract][Full Text] [Related]
18. The full activation mechanism of the adenosine A Li Y; Sun J; Li D; Lin J Proc Natl Acad Sci U S A; 2022 Oct; 119(42):e2203702119. PubMed ID: 36215480 [TBL] [Abstract][Full Text] [Related]
19. Ligand conformational and solvation/desolvation free energy in protein-ligand complex formation. Kolár M; Fanfrlík J; Hobza P J Phys Chem B; 2011 Apr; 115(16):4718-24. PubMed ID: 21466174 [TBL] [Abstract][Full Text] [Related]
20. Ritonavir and xk263 Binding-Unbinding with HIV-1 Protease: Pathways, Energy and Comparison. Sun J; Raymundo MAV; Chang CA Life (Basel); 2022 Jan; 12(1):. PubMed ID: 35054509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]