BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29394064)

  • 1. Facile and Efficient Decontamination of Thorium from Rare Earths Based on Selective Selenite Crystallization.
    Wang Y; Lu H; Dai X; Duan T; Bai X; Cai Y; Yin X; Chen L; Diwu J; Du S; Zhou R; Chai Z; Albrecht-Schmitt TE; Liu N; Wang S
    Inorg Chem; 2018 Feb; 57(4):1880-1887. PubMed ID: 29394064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rare earth separations by selective borate crystallization.
    Yin X; Wang Y; Bai X; Wang Y; Chen L; Xiao C; Diwu J; Du S; Chai Z; Albrecht-Schmitt TE; Wang S
    Nat Commun; 2017 Mar; 8():14438. PubMed ID: 28290448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Extraction of Thorium from Rare Earth Elements Using Wrinkled Mesoporous Carbon.
    Wang Z; Brown AT; Tan K; Chabal YJ; Balkus KJ
    J Am Chem Soc; 2018 Nov; 140(44):14735-14739. PubMed ID: 30351024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-selective ion sieve for thorium recovery from rare earth elements using oxygen-rich microporous carbon adsorption.
    Gao Y; Xu L; Zhang M; Zhang Q; Yang Z; Yang J; Xu Z; Lv Y; Wang Y
    J Hazard Mater; 2021 Sep; 417():126115. PubMed ID: 34020349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential separation of lanthanides, thorium and uranium using novel solid phase extraction method from high acidic nuclear wastes.
    Kesava Raju ChS; Subramanian MS
    J Hazard Mater; 2007 Jun; 145(1-2):315-22. PubMed ID: 17178189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Capture Mechanism of Radioactive Thorium from Highly Acidic Solution by a Layered Metal Sulfide.
    Xu L; Xu C; Bao H; Spanopoulos I; Ke W; Dong X; Xiao C; Kanatzidis MG
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37308-37315. PubMed ID: 34324297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration and hydrolysis of thorium(IV) in aqueous solution and the structures of two crystalline thorium(IV) hydrates.
    Torapava N; Persson I; Eriksson L; Lundberg D
    Inorg Chem; 2009 Dec; 48(24):11712-23. PubMed ID: 19921808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Extraction of Thorium(IV) from Uranium and Rare Earth Elements Using Tetraphenylethane-1,2-diylbis(phosphoramidate).
    Saha A; Kumari K; Sharma S; Kumar R; Sahu M; Dumpala RMR; Pp MS; Deb SB; Saxena MK
    Inorg Chem; 2023 Jun; 62(24):9391-9399. PubMed ID: 37269355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acylhydrazones as sensitive fluorescent sensors for discriminative detection of thorium (IV) from uranyl and lanthanide ions.
    Xiong H; Liang H; Dai K; Tian Q; Dai X; Su H; Royal G
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 293():122501. PubMed ID: 36801741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioleaching of rare earth elements from monazite sand.
    Brisson VL; Zhuang WQ; Alvarez-Cohen L
    Biotechnol Bioeng; 2016 Feb; 113(2):339-48. PubMed ID: 26332985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous complexation of thorium(IV), uranium(IV), neptunium(IV), plutonium(III/IV), and cerium(III/IV) with DTPA.
    Brown MA; Paulenova A; Gelis AV
    Inorg Chem; 2012 Jul; 51(14):7741-8. PubMed ID: 22738207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th(IV)/U(VI).
    Pan N; Li L; Ding J; Li S; Wang R; Jin Y; Wang X; Xia C
    J Hazard Mater; 2016 May; 309():107-15. PubMed ID: 26878706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thorium and Rare Earth Monoxides and Related Phases.
    Ushakov SV; Hong QJ; Gilbert DA; Navrotsky A; Walle AV
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36836980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective preconcentration of thorium in the presence of UO(2)(2+), Ce(3+) and La(3+) using Th(IV)-imprinted polymer.
    Büyüktiryaki S; Say R; Ersöz A; Birlik E; Denizli A
    Talanta; 2005 Sep; 67(3):640-5. PubMed ID: 18970218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the effect of three constituent metals of monazita on the radiosensibility of human osteoblasts.
    da F Iwahara LK; de Oliveira MS; de Alencar MAV
    J Environ Radioact; 2019 Nov; 208-209():106011. PubMed ID: 31288125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous spectrophotometric determination of thorium and rare earth metals with m-carboxychlorophosphonazo (CPAmK) and cetylpyridinium chloride.
    Hsu CG; Lian XM; Pan JM
    Talanta; 1991 Sep; 38(9):1051-5. PubMed ID: 18965259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photochemical precipitation of thorium and cerium and their separation from other ions in aqueous solution.
    Das M; Heyn AH; Hoffman MZ; Agarwal RP
    Talanta; 1970 Oct; 17(10):925-35. PubMed ID: 18960820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of phosphate solubilising microorganisms with natural rare-earth phosphate minerals: a study utilizing Western Australian monazite.
    Corbett MK; Eksteen JJ; Niu XZ; Croue JP; Watkin ELJ
    Bioprocess Biosyst Eng; 2017 Jun; 40(6):929-942. PubMed ID: 28324179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elemental bio-imaging of thorium, uranium, and plutonium in tissues from occupationally exposed former nuclear workers.
    Hare D; Tolmachev S; James A; Bishop D; Austin C; Fryer F; Doble P
    Anal Chem; 2010 Apr; 82(8):3176-82. PubMed ID: 20218581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation and quantification of 238U, 232Th and rare earths in monazite samples by ion chromatography coupled with on-line flow scintillation detector.
    Borai EH; Mady AS
    Appl Radiat Isot; 2002 Oct; 57(4):463-9. PubMed ID: 12361323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.