These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 29394073)
1. Negative Dipole Potentials and Carboxylic Polar Head Groups Foster the Insertion of Cell-Penetrating Peptides into Lipid Monolayers. Via MA; Del Pópolo MG; Wilke N Langmuir; 2018 Mar; 34(9):3102-3111. PubMed ID: 29394073 [TBL] [Abstract][Full Text] [Related]
2. The interfacial electrostatic potential modulates the insertion of cell-penetrating peptides into lipid bilayers. Via MA; Klug J; Wilke N; Mayorga LS; Del Pópolo MG Phys Chem Chem Phys; 2018 Feb; 20(7):5180-5189. PubMed ID: 29393934 [TBL] [Abstract][Full Text] [Related]
3. On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity? Jobin ML; Alves ID Biochimie; 2014 Dec; 107 Pt A():154-9. PubMed ID: 25107405 [TBL] [Abstract][Full Text] [Related]
4. How charge distribution influences the function of membrane-active peptides: Lytic or cell-penetrating? Chen L; Zhang Q; Yuan X; Cao Y; Yuan Y; Yin H; Ding X; Zhu Z; Luo SZ Int J Biochem Cell Biol; 2017 Feb; 83():71-75. PubMed ID: 28013149 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding. Ramírez PG; Del Pópolo MG; Vila JA; Longo GS Phys Chem Chem Phys; 2020 Oct; 22(40):23399-23410. PubMed ID: 33048078 [TBL] [Abstract][Full Text] [Related]
7. Adsorption and insertion of polyarginine peptides into membrane pores: The trade-off between electrostatics, acid-base chemistry and pore formation energy. Ramírez PG; Del Pópolo MG; Vila JA; Szleifer I; Longo GS J Colloid Interface Sci; 2019 Sep; 552():701-711. PubMed ID: 31176053 [TBL] [Abstract][Full Text] [Related]
8. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
9. Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1. Almarwani B; Phambu EN; Alexander C; Nguyen HAT; Phambu N; Sunda-Meya A Biochim Biophys Acta Biomembr; 2018 Jun; 1860(6):1394-1402. PubMed ID: 29621495 [TBL] [Abstract][Full Text] [Related]
10. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669 [TBL] [Abstract][Full Text] [Related]
12. SAP(E) - A cell-penetrating polyproline helix at lipid interfaces. Franz J; Lelle M; Peneva K; Bonn M; Weidner T Biochim Biophys Acta; 2016 Sep; 1858(9):2028-2034. PubMed ID: 27237727 [TBL] [Abstract][Full Text] [Related]
13. Insights into membrane translocation of the cell-penetrating peptide pVEC from molecular dynamics calculations. Alaybeyoglu B; Sariyar Akbulut B; Ozkirimli E J Biomol Struct Dyn; 2016 Nov; 34(11):2387-98. PubMed ID: 26569019 [TBL] [Abstract][Full Text] [Related]
14. Biophysical Insight on the Membrane Insertion of an Arginine-Rich Cell-Penetrating Peptide. Jobin ML; Vamparys L; Deniau R; Grélard A; Mackereth CD; Fuchs PFJ; Alves ID Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31505894 [TBL] [Abstract][Full Text] [Related]
15. Surface charge density and fatty acids enhance the membrane permeation rate of CPP-cargo complexes. Via MA; Wilke N; Mayorga LS; Del Pópolo MG Soft Matter; 2020 Nov; 16(43):9890-9898. PubMed ID: 33020785 [TBL] [Abstract][Full Text] [Related]
16. Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: importance of attractive force between cell-penetrating peptides and lipid head group. Kawamoto S; Takasu M; Miyakawa T; Morikawa R; Oda T; Futaki S; Nagao H J Chem Phys; 2011 Mar; 134(9):095103. PubMed ID: 21385001 [TBL] [Abstract][Full Text] [Related]
17. Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution. Alves ID; Goasdoué N; Correia I; Aubry S; Galanth C; Sagan S; Lavielle S; Chassaing G Biochim Biophys Acta; 2008; 1780(7-8):948-59. PubMed ID: 18498774 [TBL] [Abstract][Full Text] [Related]
18. Effect of lipid headgroup charge and pH on the stability and membrane insertion potential of calcium condensed gene complexes. Alhakamy NA; Elandaloussi I; Ghazvini S; Berkland CJ; Dhar P Langmuir; 2015 Apr; 31(14):4232-45. PubMed ID: 25768428 [TBL] [Abstract][Full Text] [Related]
19. Electrostatic effects in saturation of membrane binding of cationic cell-penetrating peptide. Svirina A; Terterov I Eur Biophys J; 2021 Jan; 50(1):15-23. PubMed ID: 33245398 [TBL] [Abstract][Full Text] [Related]
20. The enhanced membrane interaction and perturbation of a cell penetrating peptide in the presence of anionic lipids: toward an understanding of its selectivity for cancer cells. Jobin ML; Bonnafous P; Temsamani H; Dole F; Grélard A; Dufourc EJ; Alves ID Biochim Biophys Acta; 2013 Jun; 1828(6):1457-70. PubMed ID: 23462641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]