These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 2939457)
1. Graft-induced behavioral recovery in an animal model of Huntington disease. Isacson O; Dunnett SB; Björklund A Proc Natl Acad Sci U S A; 1986 Apr; 83(8):2728-32. PubMed ID: 2939457 [TBL] [Abstract][Full Text] [Related]
2. Embryonic striatal grafts restore neuronal activity of the globus pallidus in a rodent model of Huntington's disease. Nakao N; Ogura M; Nakai K; Itakura T Neuroscience; 1999 Jan; 88(2):469-77. PubMed ID: 10197767 [TBL] [Abstract][Full Text] [Related]
3. Neural grafting in a rat model of Huntington's disease: progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting. Isacson O; Brundin P; Gage FH; Björklund A Neuroscience; 1985 Dec; 16(4):799-817. PubMed ID: 2936982 [TBL] [Abstract][Full Text] [Related]
4. Donor age dependent graft development and recovery in a rat model of Huntington's disease: histological and behavioral analysis. Schackel S; Pauly MC; Piroth T; Nikkhah G; Döbrössy MD Behav Brain Res; 2013 Nov; 256():56-63. PubMed ID: 23916743 [TBL] [Abstract][Full Text] [Related]
5. Electrolytic lesion of globus pallidus ameliorates the behavioral and neurodegenerative effects of quinolinic acid lesion of the striatum: a potential novel treatment in a rat model of Huntington's disease. Joel D; Ayalon L; Tarrasch R; Veenman L; Feldon J; Weiner I Brain Res; 1998 Mar; 787(1):143-8. PubMed ID: 9518584 [TBL] [Abstract][Full Text] [Related]
6. Training specificity, graft development and graft-mediated functional recovery in a rodent model of Huntington's disease. Döbrössy MD; Dunnett SB Neuroscience; 2005; 132(3):543-52. PubMed ID: 15837116 [TBL] [Abstract][Full Text] [Related]
7. Intraparenchymal fetal striatal transplants and recovery in kainic acid lesioned rats. Giordano M; Hagenmeyer-Houser SH; Sanberg PR Brain Res; 1988 Apr; 446(1):183-8. PubMed ID: 2967100 [TBL] [Abstract][Full Text] [Related]
8. Fetal tissue transplants in animal models of Huntington's disease: the effects on damaged neuronal circuitry and behavioral deficits. Nakao N; Itakura T Prog Neurobiol; 2000 Jun; 61(3):313-38. PubMed ID: 10727778 [TBL] [Abstract][Full Text] [Related]
9. Functional neuronal replacement by grafted striatal neurones in the ibotenic acid-lesioned rat striatum. Isacson O; Brundin P; Kelly PA; Gage FH; Björklund A Nature; 1984 Oct 4-10; 311(5985):458-60. PubMed ID: 6482962 [TBL] [Abstract][Full Text] [Related]
10. Embryonic donor age and dissection influences striatal graft development and functional integration in a rodent model of Huntington's disease. Watts C; Brasted PJ; Dunnett SB Exp Neurol; 2000 May; 163(1):85-97. PubMed ID: 10785447 [TBL] [Abstract][Full Text] [Related]
11. Locomotor hyperactivity: effects of multiple striatal transplants in an animal model of Huntington's disease. Sanberg PR; Henault MA; Deckel AW Pharmacol Biochem Behav; 1986 Jul; 25(1):297-300. PubMed ID: 2944130 [TBL] [Abstract][Full Text] [Related]
13. A primate model of Huntington's disease: cross-species implantation of striatal precursor cells to the excitotoxically lesioned baboon caudate-putamen. Isacson O; Riche D; Hantraye P; Sofroniew MV; Maziere M Exp Brain Res; 1989; 75(1):213-20. PubMed ID: 2523313 [TBL] [Abstract][Full Text] [Related]
14. Reversal of long-term locomotor abnormalities in the kainic acid model of Huntington's disease by day 18 fetal striatal implants. Deckel AW; Robinson RG; Coyle JT; Sanberg PR Eur J Pharmacol; 1983 Sep; 93(3-4):287-8. PubMed ID: 6227491 [No Abstract] [Full Text] [Related]
15. Perseverative behavior underlying attentional set-shifting deficits in rats chronically treated with the neurotoxin 3-nitropropionic acid. El Massioui N; Ouary S; Chéruel F; Hantraye P; Brouillet E Exp Neurol; 2001 Nov; 172(1):172-81. PubMed ID: 11681849 [TBL] [Abstract][Full Text] [Related]
16. Striatal transplantation in a transgenic mouse model of Huntington's disease. Dunnett SB; Carter RJ; Watts C; Torres EM; Mahal A; Mangiarini L; Bates G; Morton AJ Exp Neurol; 1998 Nov; 154(1):31-40. PubMed ID: 9875265 [TBL] [Abstract][Full Text] [Related]
17. Fetal striatal allografts reverse cognitive deficits in a primate model of Huntington disease. Palfi S; Condé F; Riche D; Brouillet E; Dautry C; Mittoux V; Chibois A; Peschanski M; Hantraye P Nat Med; 1998 Aug; 4(8):963-6. PubMed ID: 9701252 [TBL] [Abstract][Full Text] [Related]
18. Functional integration of striatal allografts in a primate model of Huntington's disease. Kendall AL; Rayment FD; Torres EM; Baker HF; Ridley RM; Dunnett SB Nat Med; 1998 Jun; 4(6):727-9. PubMed ID: 9623985 [TBL] [Abstract][Full Text] [Related]
19. Morphological and cellular changes within embryonic striatal grafts associated with enriched environment and involuntary exercise. Döbrössy MD; Dunnett SB Eur J Neurosci; 2006 Dec; 24(11):3223-33. PubMed ID: 17156383 [TBL] [Abstract][Full Text] [Related]
20. Amelioration of behavioral deficits in a rat model of Huntington's disease by an excitotoxic lesion to the globus pallidus. Ayalon L; Doron R; Weiner I; Joel D Exp Neurol; 2004 Mar; 186(1):46-58. PubMed ID: 14980809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]