BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 2939475)

  • 1. Postnatal changes in the activities of acetylcholinesterase and butyrylcholinesterase in rat heart atria.
    Slavíková J; Tucek S
    Physiol Bohemoslov; 1986; 35(1):11-6. PubMed ID: 2939475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylcholinesterase and butyrylcholinesterase activity in the atria of the heart of adult albino rats.
    Slavíková J; Vlk J; Hlavicková V
    Physiol Bohemoslov; 1982; 31(5):407-14. PubMed ID: 6217470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity, molecular forms, and cytochemistry of cholinesterases in developing rat diaphragm.
    Brzin M; Sketelj J; Tennyson VM; Kiauta T; Budininkas-Schoenebeck M
    Muscle Nerve; 1981; 4(6):505-13. PubMed ID: 7311990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the distribution of cholinesterases: activity in the human and dog heart.
    Sinha SN; Keresztes-Nagy S; Frankfater A
    Pediatr Res; 1976 Aug; 10(8):754-8. PubMed ID: 940702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gender-related differences in circadian rhythm of rat plasma acetyl- and butyrylcholinesterase: effects of sex hormone withdrawal.
    Alves-Amaral G; Pires-Oliveira M; Andrade-Lopes AL; Chiavegatti T; Godinho RO
    Chem Biol Interact; 2010 Jun; 186(1):9-15. PubMed ID: 20399201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ontogenetic differences in the regional and cellular acetylcholinesterase and butyrylcholinesterase activity in the rat brain.
    Lassiter TL; Barone S; Padilla S
    Brain Res Dev Brain Res; 1998 Jan; 105(1):109-23. PubMed ID: 9497085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postnatal changes of the tonic influence of the vagus nerves on the heart rate, and of the activity of choline acetyltransferase in the heart atria of rats.
    Slavíková J; Tucek S
    Physiol Bohemoslov; 1982; 31(2):113-20. PubMed ID: 6212950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinesterase inhibitors modify the activity of intrinsic cardiac neurons.
    Darvesh S; Arora RC; Martin E; Magee D; Hopkins DA; Armour JA
    Exp Neurol; 2004 Aug; 188(2):461-70. PubMed ID: 15246845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholinesterases in dexrazoxane-treated daunorubicin cardiomyopathy in rabbits.
    Gersl V; Bajgar J; Hrdina R; Mazurová Y; Machácková J; Cerman J; Suba P
    Gen Physiol Biophys; 1999 Dec; 18(4):335-46. PubMed ID: 10766032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice.
    Girard E; Bernard V; Minic J; Chatonnet A; Krejci E; Molgó J
    Life Sci; 2007 May; 80(24-25):2380-5. PubMed ID: 17467011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition and recovery of maternal and fetal cholinesterase enzymes following a single oral dose of chlorpyrifos in rats.
    Ashry KM; Abu-Qare AW; Saleem FR; Hussein YA; Hamza SM; Kishk AM; Abou-Donia MB
    Arch Toxicol; 2002 Feb; 76(1):30-9. PubMed ID: 11875622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholinesterases and postnatal development of the negative chronotropic effects of acetylcholine in albino rats.
    Vlk J
    Physiol Bohemoslov; 1981; 30(6):497-503. PubMed ID: 6459593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergent regulation of acetylcholinesterase and butyrylcholinesterase in tissues of the rat.
    Edwards JA; Brimijoin S
    J Neurochem; 1982 May; 38(5):1393-403. PubMed ID: 7062057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Blood and cardiac cholinesterase activity in rats of different sexes and ages during muscle loading and hypokinesia].
    Rozanova VD; Antonova GA
    Fiziol Zh SSSR Im I M Sechenova; 1978 Jul; 64(7):999-1003. PubMed ID: 680292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced acetylcholine receptor density, morphological remodeling, and butyrylcholinesterase activity can sustain muscle function in acetylcholinesterase knockout mice.
    Adler M; Manley HA; Purcell AL; Deshpande SS; Hamilton TA; Kan RK; Oyler G; Lockridge O; Duysen EG; Sheridan RE
    Muscle Nerve; 2004 Sep; 30(3):317-27. PubMed ID: 15318343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postnatal development of the high-affinity uptake of choline and of the synthesis of acetylcholine in rat heart atria.
    Slavíková J; Tucek S
    Physiol Bohemoslov; 1989; 38(2):163-70. PubMed ID: 2528759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reciprocal regulation of acetylcholinesterase and butyrylcholinesterase in mammalian skeletal muscle.
    Berman HA; Decker MM; Jo S
    Dev Biol; 1987 Mar; 120(1):154-61. PubMed ID: 3817286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of acetylcholinesterase during adaptation to chronic, subacute paraoxon application in rat.
    Milatovic D; Dettbarn WD
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):20-8. PubMed ID: 8560475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histochemical demonstration of acetylcholinesterase activity in human Meibomian glands.
    Perra MT; Serra A; Sirigu P; Turno F
    Eur J Histochem; 1996; 40(1):39-44. PubMed ID: 8741098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Butyrylcholinesterase activity in the rat forebrain and upper brainstem: postnatal development and adult distribution.
    Geula C; Nagykery N
    Exp Neurol; 2007 Apr; 204(2):640-57. PubMed ID: 17274983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.