These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 29395078)
1. Implantation of a Matrigel-loaded agarose scaffold promotes functional regeneration of axons after spinal cord injury in rat. Han S; Lee JY; Heo EY; Kwon IK; Yune TY; Youn I Biochem Biophys Res Commun; 2018 Feb; 496(3):785-791. PubMed ID: 29395078 [TBL] [Abstract][Full Text] [Related]
2. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Tsai EC; Dalton PD; Shoichet MS; Tator CH Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035 [TBL] [Abstract][Full Text] [Related]
3. Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection. Gao M; Lu P; Bednark B; Lynam D; Conner JM; Sakamoto J; Tuszynski MH Biomaterials; 2013 Feb; 34(5):1529-36. PubMed ID: 23182350 [TBL] [Abstract][Full Text] [Related]
4. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds. Gros T; Sakamoto JS; Blesch A; Havton LA; Tuszynski MH Biomaterials; 2010 Sep; 31(26):6719-29. PubMed ID: 20619785 [TBL] [Abstract][Full Text] [Related]
5. Comparison of cellular architecture, axonal growth, and blood vessel formation through cell-loaded polymer scaffolds in the transected rat spinal cord. Madigan NN; Chen BK; Knight AM; Rooney GE; Sweeney E; Kinnavane L; Yaszemski MJ; Dockery P; O'Brien T; McMahon SS; Windebank AJ Tissue Eng Part A; 2014 Nov; 20(21-22):2985-97. PubMed ID: 24854680 [TBL] [Abstract][Full Text] [Related]
6. Using templated agarose scaffolds to promote axon regeneration through sites of spinal cord injury. Koffler J; Samara RF; Rosenzweig ES Methods Mol Biol; 2014; 1162():157-65. PubMed ID: 24838966 [TBL] [Abstract][Full Text] [Related]
7. Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord. Günther MI; Weidner N; Müller R; Blesch A Acta Biomater; 2015 Nov; 27():140-150. PubMed ID: 26348141 [TBL] [Abstract][Full Text] [Related]
8. Functional improvement following implantation of a microstructured, type-I collagen scaffold into experimental injuries of the adult rat spinal cord. Altinova H; Möllers S; Führmann T; Deumens R; Bozkurt A; Heschel I; Damink LH; Schügner F; Weis J; Brook GA Brain Res; 2014 Oct; 1585():37-50. PubMed ID: 25193604 [TBL] [Abstract][Full Text] [Related]
9. Relationship between scaffold channel diameter and number of regenerating axons in the transected rat spinal cord. Krych AJ; Rooney GE; Chen B; Schermerhorn TC; Ameenuddin S; Gross L; Moore MJ; Currier BL; Spinner RJ; Friedman JA; Yaszemski MJ; Windebank AJ Acta Biomater; 2009 Sep; 5(7):2551-9. PubMed ID: 19409869 [TBL] [Abstract][Full Text] [Related]
10. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. Liu J; Chen J; Liu B; Yang C; Xie D; Zheng X; Xu S; Chen T; Wang L; Zhang Z; Bai X; Jin D J Neurol Sci; 2013 Feb; 325(1-2):127-36. PubMed ID: 23317924 [TBL] [Abstract][Full Text] [Related]
11. Effect of decellularized spinal scaffolds on spinal axon regeneration in rats. Zhu J; Lu Y; Yu F; Zhou L; Shi J; Chen Q; Ding W; Wen X; Ding YQ; Mei J; Wang J J Biomed Mater Res A; 2018 Mar; 106(3):698-705. PubMed ID: 28986946 [TBL] [Abstract][Full Text] [Related]
12. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Stokols S; Tuszynski MH Biomaterials; 2006 Jan; 27(3):443-51. PubMed ID: 16099032 [TBL] [Abstract][Full Text] [Related]
13. Artificial collagen-filament scaffold promotes axon regeneration and long tract reconstruction in a rat model of spinal cord transection. Suzuki H; Kanchiku T; Imajo Y; Yoshida Y; Nishida N; Gondo T; Yoshii S; Taguchi T Med Mol Morphol; 2015 Dec; 48(4):214-24. PubMed ID: 25982872 [TBL] [Abstract][Full Text] [Related]
14. Laminin-incorporated nerve conduits made by plasma treatment for repairing spinal cord injury. Cheng H; Huang YC; Chang PT; Huang YY Biochem Biophys Res Commun; 2007 Jun; 357(4):938-44. PubMed ID: 17466943 [TBL] [Abstract][Full Text] [Related]
15. Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine. Han S; Xiao Z; Li X; Zhao H; Wang B; Qiu Z; Li Z; Mei X; Xu B; Fan C; Chen B; Han J; Gu Y; Yang H; Shi Q; Dai J Sci China Life Sci; 2018 Jan; 61(1):2-13. PubMed ID: 28527111 [TBL] [Abstract][Full Text] [Related]
16. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Jain A; Kim YT; McKeon RJ; Bellamkonda RV Biomaterials; 2006 Jan; 27(3):497-504. PubMed ID: 16099038 [TBL] [Abstract][Full Text] [Related]
17. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497 [TBL] [Abstract][Full Text] [Related]
18. The corticospinal tract structure of collagen/silk fibroin scaffold implants using 3D printing promotes functional recovery after complete spinal cord transection in rats. Li XH; Zhu X; Liu XY; Xu HH; Jiang W; Wang JJ; Chen F; Zhang S; Li RX; Chen XY; Tu Y J Mater Sci Mater Med; 2021 Mar; 32(4):31. PubMed ID: 33751254 [TBL] [Abstract][Full Text] [Related]
19. Biomaterial bridges enable regeneration and re-entry of corticospinal tract axons into the caudal spinal cord after SCI: Association with recovery of forelimb function. Pawar K; Cummings BJ; Thomas A; Shea LD; Levine A; Pfaff S; Anderson AJ Biomaterials; 2015 Oct; 65():1-12. PubMed ID: 26134079 [TBL] [Abstract][Full Text] [Related]
20. The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model. Cholas RH; Hsu HP; Spector M Biomaterials; 2012 Mar; 33(7):2050-9. PubMed ID: 22182744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]