BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29395082)

  • 1. Kinetic profiles of photocurrents in cells expressing two types of channelrhodopsin genes.
    Watanabe Y; Sugano E; Tabata K; Ozaki T; Saito T; Tamai M; Tomita H
    Biochem Biophys Res Commun; 2018 Feb; 496(3):814-819. PubMed ID: 29395082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual Responses of Photoreceptor-Degenerated Rats Expressing Two Different Types of Channelrhodopsin Genes.
    Sato M; Sugano E; Tabata K; Sannohe K; Watanabe Y; Ozaki T; Tamai M; Tomita H
    Sci Rep; 2017 Jan; 7():41210. PubMed ID: 28112267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas.
    Wang H; Sugiyama Y; Hikima T; Sugano E; Tomita H; Takahashi T; Ishizuka T; Yawo H
    J Biol Chem; 2009 Feb; 284(9):5685-96. PubMed ID: 19103605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocurrent attenuation by a single polar-to-nonpolar point mutation of channelrhodopsin-2.
    Sugiyama Y; Wang H; Hikima T; Sato M; Kuroda J; Takahashi T; Ishizuka T; Yawo H
    Photochem Photobiol Sci; 2009 Mar; 8(3):328-36. PubMed ID: 19255673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of drugs of abuse on channelrhodopsin-2 function.
    Gioia DA; Xu M; Wayman WN; Woodward JJ
    Neuropharmacology; 2018 Jun; 135():316-327. PubMed ID: 29580953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gating mechanisms of a natural anion channelrhodopsin.
    Sineshchekov OA; Govorunova EG; Li H; Spudich JL
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14236-41. PubMed ID: 26578767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge Transport by Light-Activated Rhodopsins Determined by Electrophysiological Recordings.
    Hussein T; Bamann C
    Methods Mol Biol; 2021; 2191():67-84. PubMed ID: 32865739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity.
    Berndt A; Lee SY; Wietek J; Ramakrishnan C; Steinberg EE; Rashid AJ; Kim H; Park S; Santoro A; Frankland PW; Iyer SM; Pak S; Ährlund-Richter S; Delp SL; Malenka RC; Josselyn SA; Carlén M; Hegemann P; Deisseroth K
    Proc Natl Acad Sci U S A; 2016 Jan; 113(4):822-9. PubMed ID: 26699459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoration of the majority of the visual spectrum by using modified Volvox channelrhodopsin-1.
    Tomita H; Sugano E; Murayama N; Ozaki T; Nishiyama F; Tabata K; Takahashi M; Saito T; Tamai M
    Mol Ther; 2014 Aug; 22(8):1434-1440. PubMed ID: 24821344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific residues in the cytoplasmic domain modulate photocurrent kinetics of channelrhodopsin from Klebsormidium nitens.
    Tashiro R; Sushmita K; Hososhima S; Sharma S; Kateriya S; Kandori H; Tsunoda SP
    Commun Biol; 2021 Feb; 4(1):235. PubMed ID: 33623126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion selectivity and competition in channelrhodopsins.
    Schneider F; Gradmann D; Hegemann P
    Biophys J; 2013 Jul; 105(1):91-100. PubMed ID: 23823227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and engineering aspects of channelrhodopsin2 system for neural photostimulation.
    Nikolic K; Degenaar P; Toumazou C
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1626-9. PubMed ID: 17945655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage- and temperature-dependent gating of heterologously expressed channelrhodopsin-2.
    Chater TE; Henley JM; Brown JT; Randall AD
    J Neurosci Methods; 2010 Oct; 193(1):7-13. PubMed ID: 20691205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic evaluation of photosensitivity in bi-stable variants of chimeric channelrhodopsins.
    Hososhima S; Sakai S; Ishizuka T; Yawo H
    PLoS One; 2015; 10(3):e0119558. PubMed ID: 25789474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels.
    Ishizuka T; Kakuda M; Araki R; Yawo H
    Neurosci Res; 2006 Feb; 54(2):85-94. PubMed ID: 16298005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin.
    Dreier MA; Althoff P; Norahan MJ; Tennigkeit SA; El-Mashtoly SF; Lübben M; Kötting C; Rudack T; Gerwert K
    Commun Biol; 2021 May; 4(1):578. PubMed ID: 33990694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimized and automated approach to quantifying channelrhodopsin photocurrent kinetics.
    Prignano L; Faal SG; Hera A; Dempski RE
    Anal Biochem; 2019 Feb; 566():160-167. PubMed ID: 30502319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A user's guide to channelrhodopsin variants: features, limitations and future developments.
    Lin JY
    Exp Physiol; 2011 Jan; 96(1):19-25. PubMed ID: 20621963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extending the Time Domain of Neuronal Silencing with Cryptophyte Anion Channelrhodopsins.
    Govorunova EG; Sineshchekov OA; Hemmati R; Janz R; Morelle O; Melkonian M; Wong GK; Spudich JL
    eNeuro; 2018; 5(3):. PubMed ID: 30027111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2.
    Inaguma A; Tsukamoto H; Kato HE; Kimura T; Ishizuka T; Oishi S; Yawo H; Nureki O; Furutani Y
    J Biol Chem; 2015 May; 290(18):11623-34. PubMed ID: 25796616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.