These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 29395927)
1. Genetic Regulation of the 2D to 3D Growth Transition in the Moss Physcomitrella patens. Moody LA; Kelly S; Rabbinowitsch E; Langdale JA Curr Biol; 2018 Feb; 28(3):473-478.e5. PubMed ID: 29395927 [TBL] [Abstract][Full Text] [Related]
2. The 2D to 3D growth transition in the moss Physcomitrella patens. Moody LA Curr Opin Plant Biol; 2019 Feb; 47():88-95. PubMed ID: 30399606 [TBL] [Abstract][Full Text] [Related]
3. NO GAMETOPHORES 2 Is a Novel Regulator of the 2D to 3D Growth Transition in the Moss Physcomitrella patens. Moody LA; Kelly S; Clayton R; Weeks Z; Emms DM; Langdale JA Curr Biol; 2021 Feb; 31(3):555-563.e4. PubMed ID: 33242390 [TBL] [Abstract][Full Text] [Related]
4. CLAVATA Was a Genetic Novelty for the Morphological Innovation of 3D Growth in Land Plants. Whitewoods CD; Cammarata J; Nemec Venza Z; Sang S; Crook AD; Aoyama T; Wang XY; Waller M; Kamisugi Y; Cuming AC; Szövényi P; Nimchuk ZL; Roeder AHK; Scanlon MJ; Harrison CJ Curr Biol; 2018 Aug; 28(15):2365-2376.e5. PubMed ID: 30033333 [TBL] [Abstract][Full Text] [Related]
5. PpGRAS12 acts as a positive regulator of meristem formation in Physcomitrium patens. Beheshti H; Strotbek C; Arif MA; Klingl A; Top O; Frank W Plant Mol Biol; 2021 Nov; 107(4-5):293-305. PubMed ID: 33598827 [TBL] [Abstract][Full Text] [Related]
6. Eight types of stem cells in the life cycle of the moss Physcomitrella patens. Kofuji R; Hasebe M Curr Opin Plant Biol; 2014 Feb; 17():13-21. PubMed ID: 24507489 [TBL] [Abstract][Full Text] [Related]
7. Single-cell RNA sequencing reveals dynamics of gene expression for 2D elongation and 3D growth in Physcomitrium patens. Chen Z; Wang W; Zhou S; Ding L; Xu Z; Sun X; Huo H; Liu L Cell Rep; 2024 Aug; 43(8):114524. PubMed ID: 39046878 [TBL] [Abstract][Full Text] [Related]
8. Origin and function of stomata in the moss Physcomitrella patens. Chater CC; Caine RS; Tomek M; Wallace S; Kamisugi Y; Cuming AC; Lang D; MacAlister CA; Casson S; Bergmann DC; Decker EL; Frank W; Gray JE; Fleming A; Reski R; Beerling DJ Nat Plants; 2016 Nov; 2():16179. PubMed ID: 27892923 [TBL] [Abstract][Full Text] [Related]
9. Ethylene controls three-dimensional growth involving reduced auxin levels in the moss Physcomitrium patens. Wang Y; Jiang L; Kong D; Meng J; Song M; Cui W; Song Y; Wang X; Liu J; Wang R; He Y; Chang C; Ju C New Phytol; 2024 Jun; 242(5):1996-2010. PubMed ID: 38571393 [TBL] [Abstract][Full Text] [Related]
10. Characterization of spa mutants in the moss Physcomitrella provides evidence for functional divergence of SPA genes during the evolution of land plants. Artz O; Dickopf S; Ranjan A; Kreiss M; Abraham ET; Boll V; Rensing SA; Hoecker U New Phytol; 2019 Dec; 224(4):1613-1626. PubMed ID: 31222750 [TBL] [Abstract][Full Text] [Related]
11. The phenotype of the CRINKLY4 deletion mutant of Physcomitrella patens suggests a broad role in developmental regulation in early land plants. Demko V; Ako E; Perroud PF; Quatrano R; Olsen OA Planta; 2016 Jul; 244(1):275-84. PubMed ID: 27100110 [TBL] [Abstract][Full Text] [Related]
12. Light-harvesting antenna complexes in the moss Physcomitrella patens: implications for the evolutionary transition from green algae to land plants. Iwai M; Yokono M Curr Opin Plant Biol; 2017 Jun; 37():94-101. PubMed ID: 28445834 [TBL] [Abstract][Full Text] [Related]
13. BLADE-ON-PETIOLE genes are not involved in the transition from protonema to gametophore in the moss Physcomitrella patens. Hata Y; Naramoto S; Kyozuka J J Plant Res; 2019 Sep; 132(5):617-627. PubMed ID: 31432295 [TBL] [Abstract][Full Text] [Related]
14. MicroRNAs in the moss Physcomitrella patens. Arazi T Plant Mol Biol; 2012 Sep; 80(1):55-65. PubMed ID: 21373961 [TBL] [Abstract][Full Text] [Related]
15. Class III HD-Zip activity coordinates leaf development in Physcomitrella patens. Yip HK; Floyd SK; Sakakibara K; Bowman JL Dev Biol; 2016 Nov; 419(1):184-197. PubMed ID: 26808209 [TBL] [Abstract][Full Text] [Related]
16. A Transcriptome Atlas of Physcomitrella patens Provides Insights into the Evolution and Development of Land Plants. Ortiz-Ramírez C; Hernandez-Coronado M; Thamm A; Catarino B; Wang M; Dolan L; Feijó JA; Becker JD Mol Plant; 2016 Feb; 9(2):205-220. PubMed ID: 26687813 [TBL] [Abstract][Full Text] [Related]
17. VAPYRIN-like is required for development of the moss Rathgeb U; Chen M; Buron F; Feddermann N; Schorderet M; Raisin A; Häberli GY; Marc-Martin S; Keller J; Delaux PM; Schaefer DG; Reinhardt D Development; 2020 May; 147(11):. PubMed ID: 32376679 [TBL] [Abstract][Full Text] [Related]
18. Unravelling 3D growth in the moss Physcomitrium patens. Moody LA Essays Biochem; 2022 Dec; 66(6):769-779. PubMed ID: 36342774 [TBL] [Abstract][Full Text] [Related]
19. Sporophyte Formation and Life Cycle Completion in Moss Requires Heterotrimeric G-Proteins. Hackenberg D; Perroud PF; Quatrano R; Pandey S Plant Physiol; 2016 Oct; 172(2):1154-1166. PubMed ID: 27550997 [TBL] [Abstract][Full Text] [Related]
20. Cell-specific transcriptomic analyses of three-dimensional shoot development in the moss Physcomitrella patens. Frank MH; Scanlon MJ Plant J; 2015 Aug; 83(4):743-51. PubMed ID: 26123849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]