These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 29396142)

  • 1. Generation of ApoE deficient dogs via combination of embryo injection of CRISPR/Cas9 with somatic cell nuclear transfer.
    Feng C; Wang X; Shi H; Yan Q; Zheng M; Li J; Zhang Q; Qin Y; Zhong Y; Mi J; Lai L
    J Genet Genomics; 2018 Jan; 45(1):47-50. PubMed ID: 29396142
    [No Abstract]   [Full Text] [Related]  

  • 2. Production of a Cloned Offspring and CRISPR/Cas9 Genome Editing of Embryonic Fibroblasts in Cattle.
    Singina GN; Sergiev PV; Lopukhov AV; Rubtsova MP; Taradajnic NP; Ravin NV; Shedova EN; Taradajnic TE; Polejaeva IA; Dozev AV; Brem G; Dontsova OA; Zinovieva NA
    Dokl Biochem Biophys; 2021 May; 496(1):48-51. PubMed ID: 33689075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision editing in the human embryo.
    Aschheim K
    Nat Biotechnol; 2017 Sep; 35(9):832. PubMed ID: 28898212
    [No Abstract]   [Full Text] [Related]  

  • 4. Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos.
    Plaza Reyes A; Lanner F
    Development; 2017 Jan; 144(1):3-7. PubMed ID: 28049687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of genome-edited dogs by somatic cell nuclear transfer.
    Kim DE; Lee JH; Ji KB; Park KS; Kil TY; Koo O; Kim MK
    BMC Biotechnol; 2022 Jul; 22(1):19. PubMed ID: 35831828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embryo edit makes human 'knockout'.
    Vog G
    Science; 2017 Sep; 357(6357):1225. PubMed ID: 28935787
    [No Abstract]   [Full Text] [Related]  

  • 7. Generation of myostatin edited horse embryos using CRISPR/Cas9 technology and somatic cell nuclear transfer.
    Moro LN; Viale DL; Bastón JI; Arnold V; Suvá M; Wiedenmann E; Olguín M; Miriuka S; Vichera G
    Sci Rep; 2020 Sep; 10(1):15587. PubMed ID: 32973188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts.
    Sato M; Miyoshi K; Nagao Y; Nishi Y; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S
    Xenotransplantation; 2014; 21(3):291-300. PubMed ID: 24919525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Validation of CRISPR Reagents in Preimplantation Mouse Embryos.
    Larson MA; Gibson KA; Vivian JL
    Methods Mol Biol; 2020; 2066():47-57. PubMed ID: 31512206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of insulin-deficient piglets by disrupting INS gene using CRISPR/Cas9 system.
    Cho B; Kim SJ; Lee EJ; Ahn SM; Lee JS; Ji DY; Lee K; Kang JT
    Transgenic Res; 2018 Jun; 27(3):289-300. PubMed ID: 29691708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient gene knockout in goats using CRISPR/Cas9 system.
    Ni W; Qiao J; Hu S; Zhao X; Regouski M; Yang M; Polejaeva IA; Chen C
    PLoS One; 2014; 9(9):e106718. PubMed ID: 25188313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of CRISPR-Edited Rodents Using a Piezo-Driven Zygote Injection Technique.
    Scott MA; Hu YC
    Methods Mol Biol; 2019; 1874():169-178. PubMed ID: 30353513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders.
    Shigeta M; Sakane Y; Iida M; Suzuki M; Kashiwagi K; Kashiwagi A; Fujii S; Yamamoto T; Suzuki KT
    Genes Cells; 2016 Jul; 21(7):755-71. PubMed ID: 27219625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of Cas9 transgenic zebrafish and their application in establishing an ERV-deficient animal model.
    Yang Z; Chen S; Xue S; Li X; Sun Z; Yang Y; Hu X; Geng T; Cui H
    Biotechnol Lett; 2018 Dec; 40(11-12):1507-1518. PubMed ID: 30244429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes.
    Petersen B; Frenzel A; Lucas-Hahn A; Herrmann D; Hassel P; Klein S; Ziegler M; Hadeler KG; Niemann H
    Xenotransplantation; 2016 Sep; 23(5):338-46. PubMed ID: 27610605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Editing of Pig.
    Watanabe M; Nagashima H
    Methods Mol Biol; 2017; 1630():121-139. PubMed ID: 28643255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing.
    Mout R; Ray M; Yesilbag Tonga G; Lee YW; Tay T; Sasaki K; Rotello VM
    ACS Nano; 2017 Mar; 11(3):2452-2458. PubMed ID: 28129503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-mediated ApoE-/- and LDLR-/- double gene knockout in pigs elevates serum LDL-C and TC levels.
    Huang L; Hua Z; Xiao H; Cheng Y; Xu K; Gao Q; Xia Y; Liu Y; Zhang X; Zheng X; Mu Y; Li K
    Oncotarget; 2017 Jun; 8(23):37751-37760. PubMed ID: 28465483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of complement protein C3 deficient pigs by CRISPR/Cas9-mediated gene targeting.
    Zhang W; Wang G; Wang Y; Jin Y; Zhao L; Xiong Q; Zhang L; Mou L; Li R; Yang H; Dai Y
    Sci Rep; 2017 Jul; 7(1):5009. PubMed ID: 28694465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Generation of Somatic Cell Nuclear Transfer-Competent Porcine Cells with Mutated Alleles at Multiple Target Loci by Using CRISPR/Cas9 Combined with Targeted Toxin-Based Selection System.
    Sato M; Miyoshi K; Nakamura S; Ohtsuka M; Sakurai T; Watanabe S; Kawaguchi H; Tanimoto A
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29207527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.