BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29396798)

  • 1. The Involvement of Cytochrome c Oxidase in Mitochondrial Fusion in Primary Cultures of Neonatal Rat Cardiomyocytes.
    Yin W; Li R; Feng X; James Kang Y
    Cardiovasc Toxicol; 2018 Aug; 18(4):365-373. PubMed ID: 29396798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome c oxidase is essential for copper-induced regression of cardiomyocyte hypertrophy.
    Zuo X; Xie H; Dong D; Jiang N; Zhu H; Kang YJ
    Cardiovasc Toxicol; 2010 Sep; 10(3):208-15. PubMed ID: 20582486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homocysteine restricts copper availability leading to suppression of cytochrome C oxidase activity in phenylephrine-treated cardiomyocytes.
    Zuo X; Dong D; Sun M; Xie H; Kang YJ
    PLoS One; 2013; 8(6):e67549. PubMed ID: 23818984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascular endothelial growth factor recovers suppressed cytochrome c oxidase activity by restoring copper availability in hypertrophic cardiomyocytes.
    Sun M; Zuo X; Li R; Wang T; Kang YJ
    Exp Biol Med (Maywood); 2014 Dec; 239(12):1671-7. PubMed ID: 25107896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper reverses cardiomyocyte hypertrophy through vascular endothelial growth factor-mediated reduction in the cell size.
    Zhou Y; Jiang Y; Kang YJ
    J Mol Cell Cardiol; 2008 Jul; 45(1):106-17. PubMed ID: 18495151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of copper in regression of cardiac hypertrophy.
    Zheng L; Han P; Liu J; Li R; Yin W; Wang T; Zhang W; Kang YJ
    Pharmacol Ther; 2015 Apr; 148():66-84. PubMed ID: 25476109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper chaperone for superoxide dismutase-1 transfers copper to mitochondria but does not affect cytochrome c oxidase activity.
    Wang B; Dong D; Kang YJ
    Exp Biol Med (Maywood); 2013 Sep; 238(9):1017-23. PubMed ID: 23900152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-induced regression of cardiomyocyte hypertrophy is associated with enhanced vascular endothelial growth factor receptor-1 signalling pathway.
    Zhou Y; Bourcy K; Kang YJ
    Cardiovasc Res; 2009 Oct; 84(1):54-63. PubMed ID: 19542178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MiR-485-5p modulates mitochondrial fission through targeting mitochondrial anchored protein ligase in cardiac hypertrophy.
    Zhao Y; Ponnusamy M; Liu C; Tian J; Dong Y; Gao J; Wang C; Zhang Y; Zhang L; Wang K; Li P
    Biochim Biophys Acta Mol Basis Dis; 2017 Nov; 1863(11):2871-2881. PubMed ID: 28782654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miro1 as a novel regulator of hypertrophy in neonatal rat cardiomyocytes.
    Conejeros C; Parra V; Sanchez G; Pedrozo Z; Olmedo I
    J Mol Cell Cardiol; 2020 Apr; 141():65-69. PubMed ID: 32234389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The involvement of vimentin in copper-induced regression of cardiomyocyte hypertrophy.
    Li R; Bourcy K; Wang T; Sun M; Kang YJ
    Metallomics; 2015 Sep; 7(9):1331-7. PubMed ID: 26168186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac cytochrome-c oxidase deficiency occurs during late postnatal development in progeny of copper-deficient rats.
    Johnson WT; Brown-Borg HM
    Exp Biol Med (Maywood); 2006 Feb; 231(2):172-80. PubMed ID: 16446493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbonic anhydrase inhibition prevents and reverts cardiomyocyte hypertrophy.
    Alvarez BV; Johnson DE; Sowah D; Soliman D; Light PE; Xia Y; Karmazyn M; Casey JR
    J Physiol; 2007 Feb; 579(Pt 1):127-45. PubMed ID: 17124262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A selective requirement for copper-dependent activation of cytochrome c oxidase by Cox17p.
    Kako K; Takehara A; Arai H; Onodera T; Takahashi Y; Hanagata H; Ogra Y; Takagi H; Kodama H; Suzuki KT; Munekata E; Fukamizu A
    Biochem Biophys Res Commun; 2004 Nov; 324(4):1379-85. PubMed ID: 15504366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenylephrine Attenuated Sepsis-Induced Cardiac Inflammation and Mitochondrial Injury Through an Effect on the PI3K/Akt Signaling Pathway.
    Li HM; Li KY; Xing Y; Tang XX; Yang DM; Dai XM; Lu DX; Wang HD
    J Cardiovasc Pharmacol; 2019 Mar; 73(3):186-194. PubMed ID: 30839512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upregulation of α-enolase protects cardiomyocytes from phenylephrine-induced hypertrophy.
    Gao S; Liu XP; Wei LH; Lu J; Liu P
    Can J Physiol Pharmacol; 2018 Apr; 96(4):352-358. PubMed ID: 28910549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The alteration of protein prenylation induces cardiomyocyte hypertrophy through Rheb-mTORC1 signalling and leads to chronic heart failure.
    Xu N; Guan S; Chen Z; Yu Y; Xie J; Pan FY; Zhao NW; Liu L; Yang ZZ; Gao X; Xu B; Li CJ
    J Pathol; 2015 Apr; 235(5):672-85. PubMed ID: 25385233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypertrophy induced KIF5B controls mitochondrial localization and function in neonatal rat cardiomyocytes.
    Tigchelaar W; de Jong AM; Bloks VW; van Gilst WH; de Boer RA; Silljé HH
    J Mol Cell Cardiol; 2016 Aug; 97():70-81. PubMed ID: 27094714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting Peroxisome Proliferator Activated Receptor α (PPAR α) for the Prevention of Mitochondrial Impairment and Hypertrophy in Cardiomyocytes.
    Kar D; Bandyopadhyay A
    Cell Physiol Biochem; 2018; 49(1):245-259. PubMed ID: 30138942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of function of Sco1 and its interaction with cytochrome c oxidase.
    Stiburek L; Vesela K; Hansikova H; Hulkova H; Zeman J
    Am J Physiol Cell Physiol; 2009 May; 296(5):C1218-26. PubMed ID: 19295170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.