These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29396798)

  • 1. The Involvement of Cytochrome c Oxidase in Mitochondrial Fusion in Primary Cultures of Neonatal Rat Cardiomyocytes.
    Yin W; Li R; Feng X; James Kang Y
    Cardiovasc Toxicol; 2018 Aug; 18(4):365-373. PubMed ID: 29396798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome c oxidase is essential for copper-induced regression of cardiomyocyte hypertrophy.
    Zuo X; Xie H; Dong D; Jiang N; Zhu H; Kang YJ
    Cardiovasc Toxicol; 2010 Sep; 10(3):208-15. PubMed ID: 20582486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homocysteine restricts copper availability leading to suppression of cytochrome C oxidase activity in phenylephrine-treated cardiomyocytes.
    Zuo X; Dong D; Sun M; Xie H; Kang YJ
    PLoS One; 2013; 8(6):e67549. PubMed ID: 23818984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascular endothelial growth factor recovers suppressed cytochrome c oxidase activity by restoring copper availability in hypertrophic cardiomyocytes.
    Sun M; Zuo X; Li R; Wang T; Kang YJ
    Exp Biol Med (Maywood); 2014 Dec; 239(12):1671-7. PubMed ID: 25107896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper reverses cardiomyocyte hypertrophy through vascular endothelial growth factor-mediated reduction in the cell size.
    Zhou Y; Jiang Y; Kang YJ
    J Mol Cell Cardiol; 2008 Jul; 45(1):106-17. PubMed ID: 18495151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of copper in regression of cardiac hypertrophy.
    Zheng L; Han P; Liu J; Li R; Yin W; Wang T; Zhang W; Kang YJ
    Pharmacol Ther; 2015 Apr; 148():66-84. PubMed ID: 25476109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper chaperone for superoxide dismutase-1 transfers copper to mitochondria but does not affect cytochrome c oxidase activity.
    Wang B; Dong D; Kang YJ
    Exp Biol Med (Maywood); 2013 Sep; 238(9):1017-23. PubMed ID: 23900152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-induced regression of cardiomyocyte hypertrophy is associated with enhanced vascular endothelial growth factor receptor-1 signalling pathway.
    Zhou Y; Bourcy K; Kang YJ
    Cardiovasc Res; 2009 Oct; 84(1):54-63. PubMed ID: 19542178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MiR-485-5p modulates mitochondrial fission through targeting mitochondrial anchored protein ligase in cardiac hypertrophy.
    Zhao Y; Ponnusamy M; Liu C; Tian J; Dong Y; Gao J; Wang C; Zhang Y; Zhang L; Wang K; Li P
    Biochim Biophys Acta Mol Basis Dis; 2017 Nov; 1863(11):2871-2881. PubMed ID: 28782654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miro1 as a novel regulator of hypertrophy in neonatal rat cardiomyocytes.
    Conejeros C; Parra V; Sanchez G; Pedrozo Z; Olmedo I
    J Mol Cell Cardiol; 2020 Apr; 141():65-69. PubMed ID: 32234389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The involvement of vimentin in copper-induced regression of cardiomyocyte hypertrophy.
    Li R; Bourcy K; Wang T; Sun M; Kang YJ
    Metallomics; 2015 Sep; 7(9):1331-7. PubMed ID: 26168186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac cytochrome-c oxidase deficiency occurs during late postnatal development in progeny of copper-deficient rats.
    Johnson WT; Brown-Borg HM
    Exp Biol Med (Maywood); 2006 Feb; 231(2):172-80. PubMed ID: 16446493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbonic anhydrase inhibition prevents and reverts cardiomyocyte hypertrophy.
    Alvarez BV; Johnson DE; Sowah D; Soliman D; Light PE; Xia Y; Karmazyn M; Casey JR
    J Physiol; 2007 Feb; 579(Pt 1):127-45. PubMed ID: 17124262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A selective requirement for copper-dependent activation of cytochrome c oxidase by Cox17p.
    Kako K; Takehara A; Arai H; Onodera T; Takahashi Y; Hanagata H; Ogra Y; Takagi H; Kodama H; Suzuki KT; Munekata E; Fukamizu A
    Biochem Biophys Res Commun; 2004 Nov; 324(4):1379-85. PubMed ID: 15504366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenylephrine Attenuated Sepsis-Induced Cardiac Inflammation and Mitochondrial Injury Through an Effect on the PI3K/Akt Signaling Pathway.
    Li HM; Li KY; Xing Y; Tang XX; Yang DM; Dai XM; Lu DX; Wang HD
    J Cardiovasc Pharmacol; 2019 Mar; 73(3):186-194. PubMed ID: 30839512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upregulation of α-enolase protects cardiomyocytes from phenylephrine-induced hypertrophy.
    Gao S; Liu XP; Wei LH; Lu J; Liu P
    Can J Physiol Pharmacol; 2018 Apr; 96(4):352-358. PubMed ID: 28910549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The alteration of protein prenylation induces cardiomyocyte hypertrophy through Rheb-mTORC1 signalling and leads to chronic heart failure.
    Xu N; Guan S; Chen Z; Yu Y; Xie J; Pan FY; Zhao NW; Liu L; Yang ZZ; Gao X; Xu B; Li CJ
    J Pathol; 2015 Apr; 235(5):672-85. PubMed ID: 25385233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypertrophy induced KIF5B controls mitochondrial localization and function in neonatal rat cardiomyocytes.
    Tigchelaar W; de Jong AM; Bloks VW; van Gilst WH; de Boer RA; Silljé HH
    J Mol Cell Cardiol; 2016 Aug; 97():70-81. PubMed ID: 27094714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting Peroxisome Proliferator Activated Receptor α (PPAR α) for the Prevention of Mitochondrial Impairment and Hypertrophy in Cardiomyocytes.
    Kar D; Bandyopadhyay A
    Cell Physiol Biochem; 2018; 49(1):245-259. PubMed ID: 30138942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of function of Sco1 and its interaction with cytochrome c oxidase.
    Stiburek L; Vesela K; Hansikova H; Hulkova H; Zeman J
    Am J Physiol Cell Physiol; 2009 May; 296(5):C1218-26. PubMed ID: 19295170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.