BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 29397034)

  • 1. Lipid droplet-mediated lipid and protein homeostasis in budding yeast.
    Graef M
    FEBS Lett; 2018 Apr; 592(8):1291-1303. PubMed ID: 29397034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid droplet dynamics in budding yeast.
    Wang CW
    Cell Mol Life Sci; 2015 Jul; 72(14):2677-95. PubMed ID: 25894691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid droplets maintain lipid homeostasis during anaphase for efficient cell separation in budding yeast.
    Yang PL; Hsu TH; Wang CW; Chen RH
    Mol Biol Cell; 2016 Aug; 27(15):2368-80. PubMed ID: 27307588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid droplet consumption is functionally coupled to vacuole homeostasis independent of lipophagy.
    Ouahoud S; Fiet MD; Martínez-Montañés F; Ejsing CS; Kuss O; Roden M; Markgraf DF
    J Cell Sci; 2018 Jun; 131(11):. PubMed ID: 29678904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autophagy-independent function of Atg8 in lipid droplet dynamics in yeast.
    Maeda Y; Oku M; Sakai Y
    J Biochem; 2017 Apr; 161(4):339-348. PubMed ID: 28003432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and retention mechanisms govern lipid droplet inheritance in Saccharomyces cerevisiae.
    Knoblach B; Rachubinski RA
    Traffic; 2015 Mar; 16(3):298-309. PubMed ID: 25524182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid starvation inhibits autophagy in lipid droplet-deficient cells through mitochondrial dysfunction.
    Voisin P; Bernard M; Bergès T; Régnacq M
    Biochem J; 2020 Sep; 477(18):3613-3623. PubMed ID: 32886124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods to Measure Lipophagy in Yeast.
    Cristobal-Sarramian A; Radulovic M; Kohlwein SD
    Methods Enzymol; 2017; 588():395-412. PubMed ID: 28237111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid droplet proteins, Lds1p, Lds2p, and Rrt8p, are implicated in membrane protein transport associated with ergosterol.
    Ueno K; Nagano M; Shimizu S; Toshima JY; Toshima J
    Biochem Biophys Res Commun; 2016 Jul; 475(4):315-21. PubMed ID: 27216456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation.
    Currie E; Guo X; Christiano R; Chitraju C; Kory N; Harrison K; Haas J; Walther TC; Farese RV
    J Lipid Res; 2014 Jul; 55(7):1465-77. PubMed ID: 24868093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid droplet-mediated ER homeostasis regulates autophagy and cell survival during starvation.
    Velázquez AP; Tatsuta T; Ghillebert R; Drescher I; Graef M
    J Cell Biol; 2016 Mar; 212(6):621-31. PubMed ID: 26953354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of lipid droplets by metabolically controlled Ldo isoforms.
    Teixeira V; Johnsen L; Martínez-Montañés F; Grippa A; Buxó L; Idrissi FZ; Ejsing CS; Carvalho P
    J Cell Biol; 2018 Jan; 217(1):127-138. PubMed ID: 29187528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid Droplets and the Management of Cellular Stress.
    Jarc E; Petan T
    Yale J Biol Med; 2019 Sep; 92(3):435-452. PubMed ID: 31543707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pet10p is a yeast perilipin that stabilizes lipid droplets and promotes their assembly.
    Gao Q; Binns DD; Kinch LN; Grishin NV; Ortiz N; Chen X; Goodman JM
    J Cell Biol; 2017 Oct; 216(10):3199-3217. PubMed ID: 28801319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architecture of Lipid Droplets in Endoplasmic Reticulum Is Determined by Phospholipid Intrinsic Curvature.
    Choudhary V; Golani G; Joshi AS; Cottier S; Schneiter R; Prinz WA; Kozlov MM
    Curr Biol; 2018 Mar; 28(6):915-926.e9. PubMed ID: 29526591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid Droplets Are Essential for Efficient Clearance of Cytosolic Inclusion Bodies.
    Moldavski O; Amen T; Levin-Zaidman S; Eisenstein M; Rogachev I; Brandis A; Kaganovich D; Schuldiner M
    Dev Cell; 2015 Jun; 33(5):603-10. PubMed ID: 26004510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane and lipid metabolism plays an important role in desiccation resistance in the yeast Saccharomyces cerevisiae.
    Ren Q; Brenner R; Boothby TC; Zhang Z
    BMC Microbiol; 2020 Nov; 20(1):338. PubMed ID: 33167888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional, genome-wide evaluation of liposensitive yeast identifies the "ARE2 required for viability" (ARV1) gene product as a major component of eukaryotic fatty acid resistance.
    Ruggles KV; Garbarino J; Liu Y; Moon J; Schneider K; Henneberry A; Billheimer J; Millar JS; Marchadier D; Valasek MA; Joblin-Mills A; Gulati S; Munkacsi AB; Repa JJ; Rader D; Sturley SL
    J Biol Chem; 2014 Feb; 289(7):4417-31. PubMed ID: 24273168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TORC1 inhibition induces lipid droplet replenishment in yeast.
    Madeira JB; Masuda CA; Maya-Monteiro CM; Matos GS; Montero-Lomelí M; Bozaquel-Morais BL
    Mol Cell Biol; 2015 Feb; 35(4):737-46. PubMed ID: 25512609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation.
    Eisenberg-Bord M; Mari M; Weill U; Rosenfeld-Gur E; Moldavski O; Castro IG; Soni KG; Harpaz N; Levine TP; Futerman AH; Reggiori F; Bankaitis VA; Schuldiner M; Bohnert M
    J Cell Biol; 2018 Jan; 217(1):269-282. PubMed ID: 29187527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.