BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29397064)

  • 1. Cues, corticosterone and departure decisions in a partial migrant.
    Eikenaar C; Ballstaedt E; Hessler S; Klinner T; Müller F; Schmaljohann H
    Gen Comp Endocrinol; 2018 May; 261():59-66. PubMed ID: 29397064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Baseline corticosterone levels are higher in migrating than sedentary common blackbirds in autumn, but not in spring.
    Eikenaar C; Müller F; Klinner T; Bairlein F
    Gen Comp Endocrinol; 2015 Dec; 224():121-5. PubMed ID: 26163918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ghrelin, corticosterone and the resumption of migration from stopover, an automated telemetry study.
    Eikenaar C; Hessler S; Ballstaedt E; Schmaljohann H; Kaiya H
    Physiol Behav; 2018 Oct; 194():450-455. PubMed ID: 29958878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stopover departure decisions in songbirds: do long-distance migrants depart earlier and more independently of weather conditions than medium-distance migrants?
    Packmor F; Klinner T; Woodworth BK; Eikenaar C; Schmaljohann H
    Mov Ecol; 2020; 8():6. PubMed ID: 32047634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticosterone and timing of migratory departure in a songbird.
    Eikenaar C; Müller F; Leutgeb C; Hessler S; Lebus K; Taylor PD; Schmaljohann H
    Proc Biol Sci; 2017 Jan; 284(1846):. PubMed ID: 28077768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diel variation in corticosterone and departure decision making in migrating birds.
    Eikenaar C; Schäfer J; Hessler S; Packmor F; Schmaljohann H
    Horm Behav; 2020 Jun; 122():104746. PubMed ID: 32217064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature change is an important departure cue in nocturnal migrants: controlled experiments with wild-caught birds in a proof-of-concept study.
    Klinner T; Schmaljohann H
    Proc Biol Sci; 2020 Oct; 287(1936):20201650. PubMed ID: 33023413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endocrine regulation of migratory departure from stopover: Evidence from a longitudinal migratory restlessness study on northern wheatears.
    Eikenaar C; Müller F; Rüppel G; Stöwe M
    Horm Behav; 2018 Mar; 99():9-13. PubMed ID: 29408015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quasi-experimental approach using telemetry to assess migration-strategy-specific differences in the decision-making processes at stopover.
    Schmaljohann H; Klinner T
    BMC Ecol; 2020 Jul; 20(1):36. PubMed ID: 32641125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticosterone negative feedback is weaker during spring vs. autumn migration in a songbird (Junco hyemalis).
    Bauer CM; Graham JL; Greives TJ
    Gen Comp Endocrinol; 2019 Sep; 280():36-42. PubMed ID: 30974100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticosterone predicts nocturnal restlessness in a long-distance migrant.
    Eikenaar C; Klinner T; Stöwe M
    Horm Behav; 2014 Jul; 66(2):324-9. PubMed ID: 24956025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the ecological and evolutionary function of stopover in migrating birds.
    Schmaljohann H; Eikenaar C; Sapir N
    Biol Rev Camb Philos Soc; 2022 Aug; 97(4):1231-1252. PubMed ID: 35137518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corticosterone, food intake and refueling in a long-distance migrant.
    Eikenaar C; Bairlein F; Stöwe M; Jenni-Eiermann S
    Horm Behav; 2014 May; 65(5):480-7. PubMed ID: 24721337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Birds use individually consistent temperature cues to time their migration departure.
    Burnside RJ; Salliss D; Collar NJ; Dolman PM
    Proc Natl Acad Sci U S A; 2021 Jul; 118(28):. PubMed ID: 34260383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Female-biased obligate strategies in a partially migratory population.
    Fudickar AM; Schmidt A; Hau M; Quetting M; Partecke J
    J Anim Ecol; 2013 Jul; 82(4):863-71. PubMed ID: 23363245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immune function and blood parasite infections impact stopover ecology in passerine birds.
    Hegemann A; Alcalde Abril P; Muheim R; Sjöberg S; Alerstam T; Nilsson JÅ; Hasselquist D
    Oecologia; 2018 Dec; 188(4):1011-1024. PubMed ID: 30386941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nocturnal departure timing in songbirds facing distinct migratory challenges.
    Müller F; Eikenaar C; Crysler ZJ; Taylor PD; Schmaljohann H
    J Anim Ecol; 2018 Jul; 87(4):1102-1115. PubMed ID: 29504627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How do energy stores and changes in these affect departure decisions by migratory birds? A critical view on stopover ecology studies and some future perspectives.
    Schmaljohann H; Eikenaar C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Jul; 203(6-7):411-429. PubMed ID: 28332031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird.
    Schmaljohann H; Naef-Daenzer B
    J Anim Ecol; 2011 Nov; 80(6):1115-22. PubMed ID: 21615404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing a Stopover-CORT hypothesis: Corticosterone predicts body composition and refueling rate in Gray Catbirds during migratory stopover.
    DeSimone JG; Ramirez MG; Elowe CR; Griego MS; Breuner CW; Gerson AR
    Horm Behav; 2020 Aug; 124():104776. PubMed ID: 32439349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.