BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29397531)

  • 1. A Simplified Method for Generating Purkinje Cells from Human-Induced Pluripotent Stem Cells.
    Watson LM; Wong MMK; Vowles J; Cowley SA; Becker EBE
    Cerebellum; 2018 Aug; 17(4):419-427. PubMed ID: 29397531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of human induced pluripotent stem cells to mature functional Purkinje neurons.
    Wang S; Wang B; Pan N; Fu L; Wang C; Song G; An J; Liu Z; Zhu W; Guan Y; Xu ZQ; Chan P; Chen Z; Zhang YA
    Sci Rep; 2015 Mar; 5():9232. PubMed ID: 25782665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Culture for Self-Formation of the Cerebellum from Human Pluripotent Stem Cells Through Induction of the Isthmic Organizer.
    Muguruma K
    Methods Mol Biol; 2017; 1597():31-41. PubMed ID: 28361308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival and process outgrowth of human iPSC-derived cells expressing Purkinje cell markers in a mouse model for spinocerebellar degenerative disease.
    Kamei T; Tamada A; Kimura T; Kakizuka A; Asai A; Muguruma K
    Exp Neurol; 2023 Nov; 369():114511. PubMed ID: 37634697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An expandable embryonic stem cell-derived Purkinje neuron progenitor population that exhibits in vivo maturation in the adult mouse cerebellum.
    Higuera GA; Iaffaldano G; Bedar M; Shpak G; Broersen R; Munshi ST; Dupont C; Gribnau J; de Vrij FMS; Kushner SA; De Zeeuw CI
    Sci Rep; 2017 Aug; 7(1):8863. PubMed ID: 28821816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Human Cerebellar Development In Vitro in 2D Structure.
    Madencioglu DA; Kruth KA; Wassink TH; Magnotta VA; Wemmie JA; Williams AJ
    J Vis Exp; 2022 Sep; (187):. PubMed ID: 36190246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells.
    Muguruma K; Nishiyama A; Kawakami H; Hashimoto K; Sasai Y
    Cell Rep; 2015 Feb; 10(4):537-50. PubMed ID: 25640179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Organized Cerebellar Tissue from Human Pluripotent Stem Cells and Disease Modeling with Patient-Derived iPSCs.
    Muguruma K
    Cerebellum; 2018 Feb; 17(1):37-41. PubMed ID: 29196977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells.
    Hu Y; Qu ZY; Cao SY; Li Q; Ma L; Krencik R; Xu M; Liu Y
    J Neurosci Methods; 2016 Jun; 266():42-9. PubMed ID: 27036311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of granule and Purkinje cells from primary cultured mouse cerebellar progenitors.
    Zhang T; Liu T; Hassan BA
    STAR Protoc; 2021 Sep; 2(3):100760. PubMed ID: 34467229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient generation of mature cerebellar Purkinje cells from mouse embryonic stem cells.
    Tao O; Shimazaki T; Okada Y; Naka H; Kohda K; Yuzaki M; Mizusawa H; Okano H
    J Neurosci Res; 2010 Feb; 88(2):234-47. PubMed ID: 19705453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and evolution of cerebellar neural circuits.
    Hashimoto M; Hibi M
    Dev Growth Differ; 2012 Apr; 54(3):373-89. PubMed ID: 22524607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forced cell cycle exit and modulation of GABAA, CREB, and GSK3β signaling promote functional maturation of induced pluripotent stem cell-derived neurons.
    Telezhkin V; Schnell C; Yarova P; Yung S; Cope E; Hughes A; Thompson BA; Sanders P; Geater C; Hancock JM; Joy S; Badder L; Connor-Robson N; Comella A; Straccia M; Bombau G; Brown JT; Canals JM; Randall AD; Allen ND; Kemp PJ
    Am J Physiol Cell Physiol; 2016 Apr; 310(7):C520-41. PubMed ID: 26718628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olig3 regulates early cerebellar development.
    Lowenstein ED; Rusanova A; Stelzer J; Hernaiz-Llorens M; Schroer AE; Epifanova E; Bladt F; Isik EG; Buchert S; Jia S; Tarabykin V; Hernandez-Miranda LR
    Elife; 2021 Feb; 10():. PubMed ID: 33591268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun polystyrene scaffolds as a synthetic substrate for xeno-free expansion and differentiation of human induced pluripotent stem cells.
    Leong MF; Lu HF; Lim TC; Du C; Ma NKL; Wan ACA
    Acta Biomater; 2016 Dec; 46():266-277. PubMed ID: 27667015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organotypic slices culture model for cerebellar ataxia: potential use to study Purkinje cell induction from neural stem cells.
    Lu HX; Levis H; Liu Y; Parker T
    Brain Res Bull; 2011 Feb; 84(2):169-73. PubMed ID: 21145378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induced pluripotent stem cell technology for modelling and therapy of cerebellar ataxia.
    Watson LM; Wong MM; Becker EB
    Open Biol; 2015 Jul; 5(7):150056. PubMed ID: 26136256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired Cerebellar Maturation, Growth Restriction, and Circulating Insulin-Like Growth Factor 1 in Preterm Rabbit Pups.
    Sveinsdóttir K; Länsberg JK; Sveinsdóttir S; Garwicz M; Ohlsson L; Hellström A; Smith L; Gram M; Ley D
    Dev Neurosci; 2017; 39(6):487-497. PubMed ID: 28972955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aligned neurite bundles of granule cells regulate orientation of Purkinje cell dendrites by perpendicular contact guidance in two-dimensional and three-dimensional mouse cerebellar cultures.
    Nagata I; Ono K; Kawana A; Kimura-Kuroda J
    J Comp Neurol; 2006 Nov; 499(2):274-89. PubMed ID: 16977618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human bone marrow mesenchymal stem cells support the derivation and propagation of human induced pluripotent stem cells in culture.
    Zhang L; Zheng W; Wang Y; Wang Y; Huang H
    Cell Reprogram; 2013 Jun; 15(3):216-23. PubMed ID: 23713432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.