BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29397702)

  • 1. Plasmonic Enhancement Coupling with Defect-Engineered TiO
    Shu J; Qiu Z; Lv S; Zhang K; Tang D
    Anal Chem; 2018 Feb; 90(4):2425-2429. PubMed ID: 29397702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive photoelectrochemical aptasensor for diclofenac sodium based on surface-modified TiO
    Yang L; Li L; Li F; Zheng H; Li T; Liu X; Zhu J; Zhou Y; Alwarappan S
    Anal Bioanal Chem; 2021 Jan; 413(1):193-203. PubMed ID: 33119785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding-induced formation of DNAzyme on an Au@Ag nanoparticles/TiO
    Zhang L; Shi XM; Xu YT; Fan GC; Yu XD; Liang YY; Zhao WW
    Biosens Bioelectron; 2019 Jun; 134():103-108. PubMed ID: 30959391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A photoelectrochemical aptasensor based on a 3D flower-like TiO
    Liu X; Liu P; Tang Y; Yang L; Li L; Qi Z; Li D; Wong DKY
    Biosens Bioelectron; 2018 Jul; 112():193-201. PubMed ID: 29705617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel immunosensing platform for highly sensitive prostate specific antigen detection based on dual-quenching of photocurrent from CdSe sensitized TiO
    Dong YX; Cao JT; Liu YM; Ma SH
    Biosens Bioelectron; 2017 May; 91():246-252. PubMed ID: 28013019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZnCuInSe/Au/TiO
    Geng H; Chen X; Sun L; Qiao Y; Song J; Shi S; Cai Q
    Anal Chim Acta; 2021 Feb; 1146():166-173. PubMed ID: 33461712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using carbon nanotubes-gold nanocomposites to quench energy from pinnate titanium dioxide nanorods array for signal-on photoelectrochemical aptasensing.
    Deng W; Shen L; Wang X; Yang C; Yu J; Yan M; Song X
    Biosens Bioelectron; 2016 Aug; 82():132-9. PubMed ID: 27088368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Photoelectrochemical Biosensing Using DNA Nanospacers to Modulate Electron Transfer between Metal and Semiconductor Nanoparticles.
    Saha S; Victorious A; Pandey R; Clifford A; Zhitomirsky I; Soleymani L
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):36895-36905. PubMed ID: 32814377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An enhanced photoelectrochemical biosensor for colitoxin DNA based on HKUST-1/TiO
    Zheng D; Chen M; Peng J; Chen J; Chen T; Chen Y; Huang L; Gao W
    Mikrochim Acta; 2021 Sep; 188(10):328. PubMed ID: 34495380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive photoelectrochemical assay of Pb
    Meng L; Liu M; Xiao K; Zhang X; Du C; Chen J
    Chem Commun (Camb); 2020 Jul; 56(59):8261-8264. PubMed ID: 32568311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green light excited ultrasensitive photoelectrochemical biosensing for microRNA at a low applied potential based on the dual role of Au NPs in TiO
    Liu S; Cao H; Wang X; Tu W; Dai Z
    Nanoscale; 2018 Sep; 10(35):16474-16478. PubMed ID: 30155535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Enhanced Gold Nanoclusters-Based Photoelectrochemical Biosensor for Sensitive Alkaline Phosphatase Activity Analysis.
    Zhao CQ; Zhou J; Wu KW; Ding SN; Xu JJ; Chen HY
    Anal Chem; 2020 May; 92(10):6886-6892. PubMed ID: 32316723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanoparticles-immobilized, hierarchically ordered, porous TiO2 nanotubes for biosensing of glutathione.
    Mers SS; Kumar ET; Ganesh V
    Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):171-82. PubMed ID: 26491318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The coupling of localized surface plasmon resonance-based photoelectrochemistry and nanoparticle size effect: towards novel plasmonic photoelectrochemical biosensing.
    Zhao WW; Tian CY; Xu JJ; Chen HY
    Chem Commun (Camb); 2012 Jan; 48(6):895-7. PubMed ID: 22143463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkaline Phosphatase Tagged Antibodies on Gold Nanoparticles/TiO2 Nanotubes Electrode: A Plasmonic Strategy for Label-Free and Amplified Photoelectrochemical Immunoassay.
    Zhu YC; Zhang N; Ruan YF; Zhao WW; Xu JJ; Chen HY
    Anal Chem; 2016 Jun; 88(11):5626-30. PubMed ID: 27150939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bulk/Surface Defects Engineered TiO
    Fu B; Wu W; Gan L; Zhang Z
    Anal Chem; 2019 Nov; 91(22):14611-14617. PubMed ID: 31660734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Sensitive and Selective Photoelectrochemical Biosensor for Hg(2+) Detection Based on Dual Signal Amplification by Exciton Energy Transfer Coupled with Sensitization Effect.
    Zhao M; Fan GC; Chen JJ; Shi JJ; Zhu JJ
    Anal Chem; 2015 Dec; 87(24):12340-7. PubMed ID: 26599580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liposome-Assisted Enzymatic Modulation of Plasmonic Photoelectrochemistry for Immunoassay.
    Chen FZ; Han DM; Chen HY
    Anal Chem; 2020 Jun; 92(12):8450-8458. PubMed ID: 32421311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-Infrared-to-Ultraviolet Light-Mediated Photoelectrochemical Aptasensing Platform for Cancer Biomarker Based on Core-Shell NaYF
    Qiu Z; Shu J; Tang D
    Anal Chem; 2018 Jan; 90(1):1021-1028. PubMed ID: 29171254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced photoelectrochemical DNA sensor based on TiO
    Liu XP; Chen JS; Mao CJ; Niu HL; Song JM; Jin BK
    Biosens Bioelectron; 2018 Sep; 116():23-29. PubMed ID: 29852473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.